Math 31: Abstract Algebra Fall 2017 - Quiz 2

Date: 10/12/17

○ True ○ False

Test your knowledge

 $Ha \neq Hb$.

${\bf True}$	false	${\bf questions}$	(1	points	each))
--------------	-------	-------------------	----	--------	-------	---

'nι	ne false questions (1 points each)			
1.	Let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_1 = (17) \circ (24) \circ (68) \circ (395)$.	○ True	0	False
2.	Let $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_2 = (43517) \circ (296)$.	○ True	0	False
3.	Let $p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_3^{37} = p_3$.	○ True	0	False
4.	For any two cycles $b, c \in (S_n, \circ)$ we have that $c \circ b = b \circ c$.	O True	0	False
5.	For two cycles $a, b \in (S_n, \circ)$, which have no number in common, we always \bigcirc True \bigcirc False	have that	$t \ a \circ b$	$=b \circ a.$
6.	The set $S_{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}, f \text{ bijective } \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$.	○ True	0	False
7.	In $\mathcal{F}(\mathbb{R})$ let \sim be the relation defined by: $f \sim g \Leftrightarrow f(3) = g(3)$. Then relation.	n ∼ is an ⊖ True		valence False
8.	Let (G,\cdot) be a group and H a subgroup. For a fixed $a \in G$ the function $f: aH \to Ha, ah \mapsto f(ah) := ha$ is a bijective function.	O True	0	False
9.	Let (G,\cdot) be a group and H a subgroup. Then for any $a\in G$ we \bigcirc True \bigcirc False	have al	Ha^{-1}	= H.

10. Let (G,\cdot) be a group and H a subgroup. Then if $a\in Hb$ then Ha=Hb and if $a\not\in Hb$ then

Long answer questions

question 1 (6 points) Write down the cosets of the subgroup $\langle \frac{1}{2} \rangle$ generated by $\frac{1}{2}$.

a) For $\langle \frac{1}{2} \rangle \leq (\mathbb{R}^*, \cdot)$.

b) For $\langle \frac{1}{2} \rangle \leq (\mathbb{R}, +)$.

question 2 (4 points) Let (G, \cdot) be a group with n elements i.e. #G = n. Use Lagrange's theorem to show that $x^n = e$ for all $x \in G$.