Math 31: Abstract Algebra
 Fall 2017 - Quiz 2

Date: 10/12/17

Test your knowledge

True false questions (1 points each)

1. Let $p_{1}=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5\end{array}\right)$ be a permutation in $\left(S_{9}, \circ\right)$.

Then $p_{1}=(17) \circ(24) \circ(68) \circ(395)$.
\bigcirc True \bigcirc
False
2. Let $p_{2}=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6\end{array}\right)$ be a permutation in $\left(S_{9}, \circ\right)$.

Then $p_{2}=(43517) \circ(296)$.True
False
3. Let $p_{3}=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2\end{array}\right)$ be a permutation in $\left(S_{9}, \circ\right)$.

Then $p_{3}^{37}=p_{3}$.TrueFalse
4. For any two cycles $b, c \in\left(S_{n}, \circ\right)$ we have that $c \circ b=b \circ c$.
\bigcirc TrueFalse
5. For two cycles $a, b \in\left(S_{n}, \circ\right)$, which have no number in common, we always have that $a \circ b=b \circ a$.TrueFalse
6. The set $S_{\mathbb{R}}=\{f: \mathbb{R} \rightarrow \mathbb{R}, f$ bijective $\}$ is a subgroup of $(\mathcal{F}(\mathbb{R}),+)$.TrueFalse
7. In $\mathcal{F}(\mathbb{R})$ let \sim be the relation defined by: $f \sim g \Leftrightarrow f(3)=g(3)$. Then \sim is an equivalence relation.TrueFalse
8. Let (G, \cdot) be a group and H a subgroup. For a fixed $a \in G$ the function $f: a H \rightarrow H a, a h \mapsto f(a h):=h a$ is a bijective function.True
False
9. Let (G, \cdot) be a group and H a subgroup. Then for any $a \in G$ we have $a H a^{-1}=H$. \bigcirc True \bigcirc False
10. Let (G, \cdot) be a group and H a subgroup. Then if $a \in H b$ then $H a=H b$ and if $a \notin H b$ then $H a \neq H b$.TrueFalse

Long answer questions

question 1 (6 points) Write down the cosets of the subgroup $\left\langle\frac{1}{2}\right\rangle$ generated by $\frac{1}{2}$.
a) $\operatorname{For}\left\langle\frac{1}{2}\right\rangle \leq\left(\mathbb{R}^{*}, \cdot\right)$.
b) For $\left\langle\frac{1}{2}\right\rangle \leq(\mathbb{R},+)$.
question 2 (4 points) Let (G, \cdot) be a group with n elements i.e. $\# G=n$. Use Lagrange's theorem to show that $x^{n}=e$ for all $x \in G$.

