$\begin{array}{c} \textbf{Math 31: Abstract Algebra} \\ \textbf{Fall 2017 - Quiz 1} \end{array}$

Date: 09/28/17

	Test your knowledge		
True false questions (1 point each)			
1.	$+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}.$	○ True	○ False
2.	Let $*$ be an operation on a set A . If $(A,*)$ has a neutral element \bigcirc True \bigcirc False	e, then e	is unique.
3.	Let (G, \cdot) be a group and $a, b \in G$. Then $(ab)^2 = a^2b^2$.	O True	○ False
4.	Let (G,\cdot) be a group and H and K subgroups of G . Then $H\cup K$ \bigcirc True \bigcirc False	is a subgr	oup of G .
5.	The set $H = \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R} \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), \mathbb{R})$	+). () Th	rue () False
6.	Let (G,\cdot) be a group, $a,b\in G$ fixed and $f:G\to G, x\mapsto f(x)=axb$ \bigcirc True \bigcirc False	. Then f is	s bijective.
7.	Let (G,\cdot) be a group. $S\subset G$, such that $\#S=n$ and $\langle S\rangle=G$. Then G is elements.	as only fini	itely many O False
8.	If G and H are groups, such that $\#G=n$ and $\#H=m$. Then $\#G$ True G False	$ otag = (G \times H) $	= n + m.
9.	$(\mathcal{F}(\mathbb{R}),\cdot)$ is a group with neutral element $1:\mathbb{R}\to\mathbb{R}, x\mapsto 1(x)=1.$	O True	○ False
10.	$(\mathbb{Q},+)$ is isomorphic to $(\mathbb{Z},+)$. Hint: If $F:\mathbb{Q}\to\mathbb{Z}$ is an isomorphism. $F(\frac{q}{2})$?	If $F(q) = \bigcirc$ True	1, what is O False

Long answer questions

question 1 (5 points) Let $G = \{e, a, b, c\}$ be a set of four elements, where e denotes the neutral element. Using an operation table, find all possible groups with four elements, where each element is its own inverse.

question 2 (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations

$$a^2 = e \quad , \quad b^3 = e \quad , \quad ab = ba.$$

a) Show that H is an abelian group.

b) How many different elements can H contain at most?