Math 31

Midterm Examination

Rules

- This is a closed book exam. No document is allowed.
- Cell phones and other electronic devices must be turned off.
- Questions and requests for clarification can be addressed to the instructor only.
- You are allowed to use the result of a previous question even if you did not prove it, as long as you indicate it explicitly.

Grading

- In order to receive full credit, solutions must be justified with full sentences.
- The clarity of your explanations will enter into the appreciation of your work.

Last piece of advice

Read the entire exam before you start to write anything.

Problem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	Total
Points	6	6	7	6	6	6	7	6	50
Score									

1. (6 points) Let $*$ be the operation on \mathbb{R} given by

$$
x * y=2^{x} \cdot 2^{y} .
$$

Explain whether or not
i) the operation is commutative,
ii) there is an identity element e with respect to $*$,
iii) if for every element there is an inverse with respect to $*$.
2. (6 points) Let $G=\{e, a, b, c\}$ be a set of four elements, where e denotes the neutral element.
Using an operation table, find all possible groups with these four elements, where besides e, ONLY a is its own inverse. Justify your answer.
3. (7 points) Let (G, \cdot) be a group.
a. Is $f: G \rightarrow G, x \mapsto f(x)=x^{-1}$ a bijective function? Justify your answer.
b. Show that for fixed $a \in G$ the function $h: G \rightarrow G, x \mapsto h(x)=a x a^{-1}$ is a bijective function.
c. Is the function $h: G \rightarrow G$ from part \mathbf{b}. a group isomorphism? Justify your answer.
4. (6 points) Recall that a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with real coefficients is invertible if and only if its determinant

$$
\operatorname{det}(A)=a d-b c \neq 0
$$

The multiplicative group of invertible matrices of size 2×2 is denoted by $\mathrm{GL}_{2}(\mathbb{R})$.
a. Let $\left(\mathbb{R}^{*}, \cdot\right)$ be the group of real numbers without zero and multiplication as operation. Consider the subgroup $H \leq \mathbb{R}^{*}$ given by

$$
H:=\left\{2^{n}, n \in \mathbb{Z}\right\} .
$$

Prove that the subset

$$
M:=\left\{A \in \mathrm{GL}_{2}(\mathbb{R}), \operatorname{det}(A) \in H\right\}
$$

is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
b. Is the map det : $M \rightarrow H$ injective? Justify your answer.
5. (6 points) Prove or disprove the following statements about groups.

Note: To disprove a statement an counterexample is sufficient.
a. Let (G, \cdot) be a group. If for all a, b in $G:(a b)^{2}=a^{2} b^{2}$, then G is abelian.
b. If every element of a group (G, \cdot) is its own inverse, then G is abelian.
c. If (G, \cdot) and $(H, *)$ are groups, such that $\langle a\rangle=G$ and $\langle b\rangle=H$. Then the product group $G \times H$ can be generated by a single element.
6. (6 points) In the set of real numbers \mathbb{R}, let \sim be the relation given by

$$
x \sim y \Leftrightarrow x-y \in \mathbb{Q} .
$$

a. Show that \sim is an equivalence relation in \mathbb{R}.
b. Write down the two equivalence classes
[1] of $1 \in \mathbb{R}$ and $[\sqrt{2}]$ of $\sqrt{2} \in \mathbb{R}$.
7. (7 points) Consider the group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2},+_{2} \times+_{2} \times+_{2}\right)$.
a. List all elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
b. Draw the Cayleygraph

$$
\Gamma_{1}=\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2},\{(1,0,0),(0,1,0),(0,0,1)\}\right)
$$

of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with respect to the generating set $\{(1,0,0),(0,1,0),(0,0,1)\}$.
8. (6 points) Let (G, \cdot) be a group. Let $H \leq G$ be a subgroup of G and $a \in G$ be a fixed element. Set

$$
K:=a H a^{-1}=\left\{a h a^{-1}, \text { such that } h \in H\right\} .
$$

Show that K is a subgroup of G.

