Math 31

Midterm Exam II

Rules

- This is a **closed book exam**. No document is allowed.
- Cell phones and other electronic devices must be turned off.
- Questions and requests for clarification can be addressed to the instructor only.
- You are allowed to use the result of a previous question even if you did not prove it, as long as you indicate it explicitly.

Grading

- In order to receive full credit, solutions must be **justified with full sentences**.
- The clarity of your explanations will enter into the appreciation of your work.

Last piece of advice

Read the entire exam before you start to write anything.

Problem	1	2	3	4	5	6	7	8	Total
Points	6	6	6	7	5	5	8	7	50
Score									

1. (6 points) Recall that a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with real coefficients is invertible if and only if det(A) = $ad - bc \neq 0$. The multiplicative group of invertible matrices of size 2×2 is denoted by (GL₂(\mathbb{R}), \cdot). Let

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & \frac{1}{3} \\ 3 & 0 \end{pmatrix}$$

be two elements in $GL_2(\mathbb{R})$.

a. Determine the order of *A* and the order of *B*.

b. Show that *AB* has infinite order.

2. (6 points) Let $p \in (S_9, \circ)$ be the permutation

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 8 & 2 & 4 & 1 & 9 & 6 & 5 \end{pmatrix}.$$

a. Write *p* as a product of disjoint cycles.

b. Calculate p^{22} .

c. Consider the elements in (S_5, \circ) . Into how many disjoint cycles can an element q of S_5 maximally decompose? Justify your answer. **Note:** A cycle must have at least two elements.

d. What is the maximal order an element in (S_5, \circ) can have? Justify your answer and give an example.

3. (6 *points*) Let (G, \cdot) be a group with neutral element *e*. **Prove or disprove** the following statements.

Note: To disprove a statement an counterexample is sufficient.

a. G and $\{e\}$ are normal subgroups in G.

b. Let $N \triangleleft G$ be a normal subgroup. Then any subgroup of *N* is normal in *G*.

c. Suppose *H* and *K* are subgroups of *G*, such that $H \neq K$. If #H = #K = p, where *p* is a prime number, then $H \cap K = \{e\}$. **Hint:** Lagrange's theorem.

- **4.** (7 *points*) Let $(GL_2(\mathbb{R}), \cdot)$ be the group of invertible 2×2 matrices.
- **a.** Show that

$$f : (\operatorname{GL}_2(\mathbb{R}), \cdot) \to (\mathbb{R}, +), A \mapsto f(A) := \ln(|\det(A)|)$$

is a group homomorphism.

b. Find the kernel ker(f) of f.

c. Is *f* surjective? Justify your answer.

d. Apply the fundamental homomorphism theorem (FHT) to f.

5. (5 *points*) Let (G, \cdot) be a group. Its *center* is by definition the subgroup C of elements that commute with all the elements of G:

 $C = \{ c \in G \,, \, cx = xc \quad \text{for all } x \in G \} \leq G.$

a. Show that *C* is a normal subgroup of *G*.

b. Show that if G/C is cyclic, then G is abelian. **Hint:** Let $G/C = \langle Ca \rangle$ be generated by the coset Ca for some $a \in G$. **6.** (*5 points*) Let (G, \cdot) be a group and $N \triangleleft G$ be a normal subgroup. Suppose that the order of every element in N and in G/N is a power of 5. Show that the order of every element in G is a power of 5.

7. (8 *points*) Let Γ be the following graph with vertices $V = \{A, B\}$ and edges $E = \{1, 2, 3, 4\}$.

a. List all elements of its automorphism group $Aut(\Gamma)$.

b. Draw the Cayley graph of $(Aut(\Gamma), \circ)$. **Hint:** $Aut(\Gamma)$ can be generated by three elements. **8.** (7 *points*) Let (G, \cdot) be a group. Let $N \triangleleft G$ and $L \triangleleft G$ be normal subgroups of G, such that $N \subseteq L$. On the quotient groups we define

$$f: G/N \to G/L, Na \mapsto f(Na) = La.$$

a. Show that f is well-defined, i.e. if Na = Nb in G/N then f(Na) = f(Nb) in G/L.

b. Show that *f* is a group homomorphism.

c. Find the kernel ker(f) of f.

d. Conclude that (G/N)/(L/N) is isomorphic to G/L.