Math 31: Abstract Algebra Fall 2017 - Homework 3

Return date: Wednesday 10/04/17
keyword: isomorphisms, Cayley graphs, equivalence relations
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (5 points) Isomorphic and non-isomorphic groups.
a) Let $(E,+)=(2 \mathbb{Z},+)$ be the group of even integers. Show that E is isomorphic to \mathbb{Z}. In general, is $(n \mathbb{Z},+)$ isomorphic to $(\mathbb{Z},+)$?
b) Show that $(\mathbb{R},+)$ is not isomorphic to $\left(\mathbb{R}^{*}, \cdot\right)$, where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.

Hint: Look at the properties of -1 in \mathbb{R}^{*}. Does $(\mathbb{R},+)$ have such an element?
exercise 2. (6 points) Consider the groups $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3},+{ }_{2} \times+_{3}\right)$ and (S_{3}, \circ), where $S_{3}=S(\{1,2,3\})$. Recall that S_{3} consists of the elements
id, $s_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), s_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), s_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right), r_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ and $r_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$.
a) Use the operation table for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ from Homework 2 to draw the Cayley graph $\Gamma_{1}=\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3},\{(1,0),(0,1)\}\right)$.
b) Write the operation table for $\left(S_{3}, \circ\right)$.
c) Draw the Cayley graph $\Gamma_{2}=\Gamma\left(S_{3},\left\{s_{1}, r_{1}\right\}\right)$ and compare it with Γ_{1}.
exercise 3. (3 points) Let (G, \cdot) be a group with neutral element e. Let S be a generating set, i.e. $G=\langle S\rangle$ consisting of n elements. Let $\Gamma(G, S)$ be the corresponding Cayley graph. Show that

$$
\operatorname{val}(h)=\operatorname{val}(e)=2 n \text { for all } h \in G .
$$

exercise 4. (6 points) Prove that each of the following is an equivalence relation on the indicated set. Then describe the partition associated with the equivalence relation.
a) In $\mathbb{Q}: q \sim r \Leftrightarrow q-r \in E$, where $E=2 \mathbb{Z}$ is the set of even integers.
b) In $\mathbb{R}^{2}:\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}^{3}+y_{1}=x_{2}^{3}+y_{2}$.
c) In a group $(G, \cdot): a \sim b \Leftrightarrow$ there is an integer k such that $a^{k}=b^{k}$.

