Math 31: Abstract Algebra Fall 2017 - Homework 1

Return date: Wednesday 09/20/17

keywords: operations - examples and properties

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 1. (6 points) Which of the following rules are operations on the indicated set? Justify your answer in each case.

- a) $a * b = a \cdot b$, on the set $\{n \in \mathbb{Z} : n \leq 0\}$.
- b) (a,c) * (b,d) = (a+b,c+d), on the set $\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$.
- c) $a * b = |a^2 b|$, on the set $\{n \in \mathbb{Z} : n \ge 0\}$.

exercise 2. (6 points) Each of the following is an operation * on \mathbb{R} .

- a) x * y = |x + y|.
- b) $x * y = x \cdot (y+1)$.
- c) $x * y = \min\{x + 1, y + 1\}.$

Explain whether or not

- i) the operation is commutative,
- ii) the operation is associative,
- iii) \mathbb{R} has an identity element with respect to *,
- iv) every $x \in \mathbb{R}$ has an inverse with respect to *.

exercise 3. (8 points) Let A be the two-element set $A = \{a, b\}$. Write a table of all 16 possible operations on A using the format explained in the book on page 20. Label these operations Op_1 to Op_{16} . Then

- a) among these operations, identify those that are commutative,
- b) identify the operations that have an identity element,
- c) identify the operations for which each element has an inverse.

Note: Example solutions to similar problems can be found at the end of Chapter 2 of the textbook.