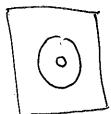

Quiz 5: Volumes!

February 8, 2012


	()	•	
Name:	Jolython	Section:	
Name:	Qu [d] Land		

Instructions: Be sure to write neatly and show all steps. Circle or box your final answer. Answer both questions (second one is on the back).

Consider the region bounded by the curves $y = 4 - x^2$, x = 1, and y = 0 as pictured to the right. Rotate this region about the y-axis to form a solid.

1. Compute the volume of this solid using disks/washers (slices).

$$y = 4 - x' = 7 \quad x' = 4 - y => x = \sqrt{4 - y^2}$$

$$A(y) = \pi \left(\sqrt{4-y^2} \right)^2 - \pi \left(1 \right)^2 = \pi \left(4-y \right) - \pi = \pi \left(3-y \right).$$

$$V = \int_{0}^{3} \pi (3-y) dy = \pi \left[\frac{3}{3} - y dy \right] = \pi \left[\frac{3}{3} - \frac{1}{2}y^{2} \right]_{0}^{3} = \pi \left[9 - \frac{9}{2} \right] = \left(\frac{9\pi}{2} \right)$$

2. Compute the volume of this solid using cylindrical shells.

$$V = \int_{1}^{2} 2\pi x \left(4 - x^{2} \right) dx = 2\pi \int_{1}^{2} \left(4x - x^{3} \right) dx = 2\pi \left[2x^{2} - \frac{x^{4}}{4} \right]_{1}^{2}$$

$$= 2\pi \left[8 - 4 - 2 + \frac{1}{4} \right] = 2\pi \left[2 + \frac{1}{4} \right] = \left[\frac{9\pi}{2} \right]$$

Bonus: Name an object in this classroom which is a solid of revolution.

Chalk stick.