Homework 2

Due January 20

Do the following problems from the textbook:

Section 5.1: 24

Section 5.2: 6a, 27, 34, 47, 51.
Appendix E: 12, 18, 20, 26, 30. Hint $1+2+3+\ldots+n-1+n=n(n+1) / 2$.

And also do the following multipart problem:
a) Find the area under the curve $y=x$ from $x=0$ to $x=1$. Hint: triangle.
b) In class we showed that the area under the curve $y=x^{2}$ from $x=0$ to $x=1$ is \qquad
c) In problem 5.1.24, you showed that the area under the curve $y=x^{3}$ from $x=0$ to $x=1$ is \qquad
d) Using the online Riemann sums applet
http://www.slu.edu/classes/maymk/Applets/Riemann.html
what do you think is the area under the curve $y=x^{4}$ from $x=0$ to $x=1$?
e) What do you think is the area under the curve $y=x^{n}$ from $x=0$ to $x=1$?
E.C. Prove the following theorem: If $F(x)$ and $G(x)$ are any two antiderivatives of a function $f(x)$, then $G(x)=F(x)+C$ for some constant C. Hint: You need to show that the function $H(x)=G(x)-F(x)$ is constant. One way to do this is to show that $H(b)-H(a)=0$ for any two numbers a and b. Apply the Mean Value Theorem to H in the form of (2) on page 285 in Stewart.

