Final Review

GOOD THINGS TO KNOW ...

- 1. The graphs of all six trigonometric functions and their values at standard angles.
- 2. The antiderivatives of the following functions:

$x^n, n \neq -1$	$\frac{1}{x}$	e^x
$\cos x$	$\sin x$	$\sec^2 x$
$\sec x \tan x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$

- 3. The meaning of position, distance, displacement, velocity, speed, and acceleration and how they relate to one another using derivatives and definite and indefinite integrals.
- 4. The definition of the definite integral as a limit of a Riemann sum.
- 5. Properties of the definite integral.
- 6. The statement, including hypotheses, of both parts of the Fundamental Theorem of Calculus.
- 7. The Substitution Rule for Definite Integrals.
- 8. The calculus definition of area between curves.
- 9. The calculus definition of the volume of a solid.
- 10. The definition of force and work, when other quantities are constant and when they aren't.
- 11. The statement of the Mean Value Theorem for Integrals.
- 12. The formula for integration by parts.
- 13. The method used to evaluate integrals of the form:

$\int \sin^m x \cos^{2k+1} x dx$	$\int \sin^{2k+1} x \cos^n x dx$
$\int \tan^m x \sec^{2k} x dx$	$\int \tan^{2k+1} x \sec^n x dx$

14. The helpful trig substitution for all three "square root" cases, and which identities are helpful.

Math 2

SOME PROBLEMS FOR PRACTICE

- 1. Consider the region bounded by y = 2x 1, y = -1, and x = 2.
 - (a) Find the area of the region on three ways. You should get the same answer all three ways.
 - i. Use geometric formulas.
 - ii. Express it as the limit of a Riemann Sum, and finding the limit.
 - iii. Change the Riemann Sum above into an integral and evaluate.
 - (b) Find the volume of the solid created when this region is rotated about the line y = -1 in three ways. Again you should get the same answer each time.
 - i. Use one or more geometric formulas.
 - ii. Use an integral arrived at through slicing.
 - iii. Use an integral arrived at through cylindrical shells.
 - (c) Find the volume of the solid created when this region is rotated about the y-axis.
 - i. Use one or more geometric formulas.
 - ii. Use an integral arrived at through slicing.
 - iii. Use an integral arrived at through cylindrical shells.
- 2. Find the derivative of the following functions.

(a)
$$f(x) = \int_{a}^{b} g(t) dt$$

- (b) $F(x) = \int_{x}^{1} \sqrt{t + \sin t} \, dt$
- (c) $G(x) = \int_0^x \frac{t^2}{1+t^3} dt$

(d)
$$y = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$$

- 3. A particle moves along a line with velocity function $v(t) = t^2 t$, where v is measured in meters per second. Find
 - (a) the displacement of the particle during the time interval [0, 5],
 - (b) and the distance traveled by the particle over the same time interval.
- 4. Evaluate:
 - (a) $\int_0^1 \frac{d}{dx} (e^{\arctan x}) dx$ (b) $\frac{d}{dx} \int_0^1 e^{\arctan x} dx$ (c) $\frac{d}{dx} \int_0^x e^{\arctan t} dt$
- 5. Find the area between the given curves.
 - (a) $y = x^2$ and $x = y^2$
 - (b) $y = \tan x, y = 2\sin x, \text{ and } -\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$
 - (c) y = |x| and $y = \frac{2}{x^2+1}$

- 6. Use calculus to find the area of the triangle with vertices (0.0), (2,1) and (-1,6).
- 7. Let R be the region in the first quadrant bounded by the curves $y = x^3$ and $y = 2x x^2$. Calculate the following:
 - (a) The area of R.
 - (b) The volume obtained by rotating R about the x-axis.
 - (c) The volume obtained by rotating R about the y-axis.
- 8. Find the volume of the solid formed when the given region is rotated about the given axis.
 - (a) $y = \frac{1}{x}$, y = 0, x = 1, and x = 3; about y = -1.
 - (b) $y = -x^2 + 6x 8$ and y = 0; about the x-axis.
 - (c) $x = (y 3)^2$ and x = 4; about y = 1.
 - (d) $y = \ln x$, y = 0, and x = 2; about the y-axis.
 - (e) $y = \frac{1}{1+x^2}$, y = 0, x = 0, and x = 2; about x = 2.
- 9. Find the volume of the solid described below.
 - (a) The base of the solid is a circular disk with radius 3. The parallel cross-sections perpendicular to the base are isosceles right triangles with the hypotenuse lying along the base.
 - (b) The base of the solid is the region bounded by the parabolas $y = x^2$ and $y = 2 x^2$. The cross sections perpendicular to the x-axis are squares with one side lying along the base.
- 10. Use calculus to verify the following geometric formulas:
 - (a) The area of a circle with radius r: $A = \pi r^2$.
 - (b) The volume of a sphere of radius r: $V = \frac{4}{3}\pi r^3$.
 - (c) The volume of a cone with radius r and height h: $V = \frac{1}{3}\pi r^2 h$.
- 11. Evaluate the following integrals:
 - (a) $\int_{1}^{4} \frac{dt}{(2x+1)^{3}}$ (b) $\int_{0}^{1} \frac{\sqrt{\arctan x}}{x^{2}+1} dx$ (c) $\int \frac{1}{y^{2}-4y-12} dy$ (d) $\int \frac{\sec^{6}\theta}{\tan^{2}\theta} d\theta$ (e) $\int te^{\sqrt{t}} dt$ (f) $\int \frac{1-\tan \theta}{1+\tan \theta} d\theta$ (g) $\int_{0}^{\frac{\pi}{4}} \tan^{5} \theta \sec^{3} \theta d\theta$
 - (h) $\int x^2 \sin x \, dx$

- 12. A spring has a natural length of 20 cm. Compare the work, W_1 , done in stretching the spring from 20 cm to 30 cm with the work, W_2 , done in stretching it from 30 cm to 40 cm. How are W_1 and W_2 related?
- 13. An aquarium 2 m long, 1 m wide, and 1 m deep is full of water. Find the work needed to pump half of the water out of the aquarium. (Use the fact that the density of water is 1000 kg/m^3 .)
- 14. Find the average value of the given function on the given interval. Also find the value, c where the function attains its average value.
 - (a) $f(x) = \sqrt{x}$ on [0, 4].
 - (b) $g(x) = 2 + 6x 3x^2$ on [0, 2].
 - (c) $h(x) = \frac{x^2 + 2x 1}{x^3 x}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.