DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

1. Implicit differentiation

In math 1, we learned about the function $\ln x$ being the inverse of the function e^x . Remember that we found the derivative of $\ln x$ by differentiating the equation

$$\ln x = y$$

First, you wrote it in terms of functions that we knew:

$$x = e^y$$

Then, we took the derivative of both sides

$$1 = e^y \frac{dy}{dx}.$$

Then, since $e^y = x$, we simplified to

$$1 = x \frac{dy}{dx}$$

and concluded by dividing both sides by x to get

$$\frac{1}{x} = \frac{dy}{dx}.$$

2. Inverse trig functions

We will do the same for the inverse trig functions. The process is the same, it is just a little hard to simplify.

Example 1. Find the $\frac{dy}{dx}$ when $y = Sin^{-1}(x)$.

Solution. Again we start by writing it in terms of functions we know better, so

 $\sin(y) = x$

for $y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$. Now, take the derivative of both sides, $\cos(u)\frac{dy}{dt} = 1$

$$\cos(y)\frac{dy}{dx} = 1.$$

Now $y = Sin^{-1}(x)$ so we need to simplify $\cos(Sin^{-1}(x))$. We did this in Example 5 of the previous packet where we showed

$$\cos(Sin^{-1}(x)) = \sqrt{1 - x^2}.$$

So we conclude that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

Patterning our work after the example we can show that

(1) for
$$y = \operatorname{Tan}^{-1}(x)$$
, we get $\frac{dy}{dx} = \frac{1}{1+x^2}$
(2) for $y = \operatorname{Cos}^{-1}(x)$, we get $\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$

3. Problems

Repeat the Example for

(1) $y = \operatorname{Tan}^{-1}(x)$ (2) $y = \operatorname{Cos}^{-1}(x)$

Find the derivatives of the following functions (1) $f(x) = \operatorname{Sin}^{-1}(2x - 1).$

(1)
$$f(x) = \operatorname{Sin}^{-1}(2x-1).$$

(2) $h(x) = (1+x^2)\operatorname{Tan}^{-1}(x).$
(3) $y = \frac{\cos^{-1}t}{t}.$
(4) $g(x) = \operatorname{Tan}^{-1}(\sin(x)).$
(5) $y = \operatorname{Tan}^{-1}\left(\frac{x}{a}\right) + \ln\sqrt{\frac{x-a}{x+a}}.$
(6) $F(t) = \sqrt{1-t^2} + \operatorname{Sin}^{-1}t.$
(7) $f(x) = x \sin x \operatorname{Cos}^{-1}x$
(8) $y = (\operatorname{Sin}^{-1}x)^2$
(9) $y = \operatorname{Sin}^{-1}x^2$
(10) $U(t) = e^{\operatorname{Tan}^{-1}t}.$

Solutions to the odd numbered ones of the last 10:

• (1)
$$\frac{2}{\sqrt{1-(2x-1)^2}}$$

• (3) $\frac{\frac{-t}{\sqrt{1-t^2}}-\cos^{-1}t}{t^2}$
• (5) $\frac{\frac{1}{a}}{1+(\frac{x}{a})^2} + \frac{\frac{1}{2}(\frac{x-a}{x+a})^{\frac{-1}{2}}(\frac{(x+a)-(x-a)}{(x+a)^2})}{\sqrt{\frac{x-a}{x+a}}}$
• (7) $\sin x \cos^{-1}x + x \left(\cos x \cos^{-1}x - \frac{\sin x}{\sqrt{1-x^2}}\right)$
• (9) $\frac{2x}{\sqrt{1-x^4}}$