DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

1. Implicit differentiation

In math 1, we learned about the function $\ln x$ being the inverse of the function e^{x}. Remember that we found the derivative of $\ln x$ by differentiating the equation

$$
\ln x=y
$$

First, you wrote it in terms of functions that we knew:

$$
x=e^{y}
$$

Then, we took the derivative of both sides

$$
1=e^{y} \frac{d y}{d x}
$$

Then, since $e^{y}=x$, we simplified to

$$
1=x \frac{d y}{d x}
$$

and concluded by dividing both sides by x to get

$$
\frac{1}{x}=\frac{d y}{d x}
$$

2. Inverse trig functions

We will do the same for the inverse trig functions. The process is the same, it is just a little hard to simplify.
Example 1. Find the $\frac{d y}{d x}$ when $y=\operatorname{Sin}^{-1}(x)$.
Solution. Again we start by writing it in terms of functions we know better, so

$$
\sin (y)=x
$$

for $y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$. Now, take the derivative of both sides,

$$
\cos (y) \frac{d y}{d x}=1
$$

Now $y=\operatorname{Sin}^{-1}(x)$ so we need to simplify $\cos \left(\operatorname{Sin}^{-1}(x)\right)$. We did this in Example 5 of the previous packet where we showed

$$
\cos \left(\operatorname{Sin}^{-1}(x)\right)=\sqrt{1-x^{2}}
$$

So we conclude that

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

Patterning our work after the example we can show that
(1) for $y=\operatorname{Tan}^{-1}(x)$, we get $\frac{d y}{d x}=\frac{1}{1+x^{2}}$
(2) for $y=\operatorname{Cos}^{-1}(x)$, we get $\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$

3. Problems

Repeat the Example for
(1) $y=\operatorname{Tan}^{-1}(x)$
(2) $y=\operatorname{Cos}^{-1}(x)$

Find the derivatives of the following functions
(1) $f(x)=\operatorname{Sin}^{-1}(2 x-1)$.
(2) $h(x)=\left(1+x^{2}\right) \operatorname{Tan}^{-1}(x)$.
(3) $y=\frac{\cos ^{-1} t}{t}$.
(4) $g(x)=\operatorname{Tan}^{-1}(\sin (x))$.
(5) $y=\operatorname{Tan}^{-1}\left(\frac{x}{a}\right)+\ln \sqrt{\frac{x-a}{x+a}}$.
(6) $F(t)=\sqrt{1-t^{2}}+\operatorname{Sin}^{-1} t$.
(7) $f(x)=x \sin x \operatorname{Cos}^{-1} x$
(8) $y=\left(\operatorname{Sin}^{-1} x\right)^{2}$
(9) $y=\operatorname{Sin}^{-1} x^{2}$
(10) $U(t)=e^{\operatorname{Tan}^{-1} t}$.

Solutions to the odd numbered ones of the last 10:

- (1) $\frac{2}{\sqrt{1-(2 x-1)^{2}}}$
- (3) $\frac{\frac{-t}{\sqrt{1-t^{2}}}-\cos ^{-1} t}{t^{2}}$
- (5) $\frac{\frac{1}{a}}{1+\left(\frac{x}{a}\right)^{2}}+\frac{\frac{1}{2}\left(\frac{x-a}{x+a}\right)^{\frac{-1}{2}}\left(\frac{(x+a)-(x-a)}{(x+a)^{2}}\right)}{\sqrt{\frac{x-a}{x+a}}}$
- (7) $\sin x \cos ^{-1} x+x\left(\cos x \cos ^{-1} x-\frac{\sin x}{\sqrt{1-x^{2}}}\right)$
- (9) $\frac{2 x}{\sqrt{1-x^{4}}}$

