
THE RECURSION THEOREM (FINAL)

REBECCA WEBER

Kleene’s Recursion Theorem, though provable in only a few lines, is
fundamental to computability theory and allows strong self-reference
in proofs. It is a fixed-point theorem in the sense that it asserts for
any total computable function f , there is a number n such that n and
f(n) index (or code) the same partial computable function (though we
need not have f(n) = n). In this paper we will prove the Recursion
Theorem, two generalizations, and some simple applications.

Note that these theorems date back to near the beginning of the
study of computability theory; those attributed to Kleene may or may
not have been published by him at the time of their proof. For Kleene’s
write-up of his own results, see his text [1]. The S-m-n Theorem and
all versions of the Recursion Theorem are attributed to him; the Rel-
ativized S-m-n Theorem is not attributed to anyone, which is likely
because it is such a natural and straightforward generalization that
many people proved it independently.

We begin with some background. As is standard in computability
theory (see, e.g., the text by Soare [6]), let the enumeration of all partial
computable functions be denoted {ϕe : e ∈ N}. The index or code of
ϕe is e, and there is a computable bijection with computable inverse
between functions and codes, which we assume is fixed and known
from the beginning. This bijection allows one to obtain ϕe from e and
encode any defined function into an index e. We say ϕn = ϕm if the
domains of the two functions are equal and on the (mutual) domain
the output values of the functions are always equal. As every function
has infinitely-many indices, this is not an empty definition. For other
standard computability-theoretic definitions see [6].

The basic theorem needed to prove the Recursion Theorem and
its variants is the following, known as the S-m-n Theorem or the
parametrization theorem.

Theorem 1 (S-m-n Theorem, Kleene). Given m, n, there is a prim-
itive recursive one-to-one function Sm

n such that for all e, all n-tuples
x̄, and all m-tuples ȳ,

ϕSm
n (e,x̄)(ȳ) = ϕe(x̄, ȳ).

1



2 REBECCA WEBER

Very roughly, Sm
n (e, x̄) decodes e into an n +m-input function, fills

the entries of x̄ into the appropriate inputs, and recodes the resultant
m-input function. It is important for our use that Sm

n is total, but that
it is actually primitive recursive and one to one will not be used. In
the proofs using this theorem, the input e will be fixed, and so we will
ignore it and think of Sm

n as a function of n variables (x̄).

Theorem 2 (Recursion or Fixed-Point Theorem, Kleene). Suppose
that f is a total computable function; then there is a number n such
that ϕn = ϕf(n). Moreover, n is computable from an index for f .

The idea of the proof is as follows. If we could guarantee f(ϕx(x))↓,
then using the slightly circular choice of x as the index of f◦ϕx we would
have f(ϕx(x)) = (f ◦ ϕx)(x) = ϕx(x), and so the functions indexed by
f(ϕx(x)) and ϕx(x) would be the same because those values would be
equal. However, there is no guarantee of halting for f(ϕx(x)), and for
a function such as f(n) = n+1 we must have divergence. However, we
may define a function on two inputs that mimics the desired function:

ϕe(x, y) =

{
ϕf(ϕx(x))(y) ϕx(x) ↓
↑ otherwise

By the S-m-n Theorem 1, this function is equal to ϕs(x)(y) for a total
computable function s. The key fact is that if ϕx(x)↑, s(x) will index
a function that diverges everywhere, but s(x) itself will still be defined.

Proof of Theorem 2. By the S-m-n Theorem there is a total computable
function s(x) such that for all x and y

ϕf(ϕx(x))(y) = ϕs(x)(y).

Let m be any index such that ϕm computes the function s; note that
s and hence m are computable from an index for f . Rewriting the
statement above yields

ϕf(ϕx(x))(y) = ϕϕm(x)(y).

Then, putting x = m and letting n = ϕm(m) (which is defined because
s is total), we have

ϕf(n)(y) = ϕf(ϕm(m))(y) = ϕs(m)(y) = ϕϕm(m)(y) = ϕn(y)

as required. �

From the Recursion Theorem we obtain the immediate corollary that
there are numbers n,m such that ϕn = ϕn+1 and ϕm = ϕ2m, and we
may continue in this manner for any total computable function.

Corollary 3. If f is a total computable function then there are arbi-
trarily large numbers n such that ϕf(n) = ϕn.



THE RECURSION THEOREM (FINAL) 3

Corollary 3 is proved by showing that for all N , there is a function
that agrees with f on n > N and cannot have a fixed point below N ,
and hence has only fixed points that are also fixed for f .1 The following
corollary is proved using the S-m-n Theorem to define a function from
f to which to apply the Recursion Theorem.

Corollary 4. If f(x, y) is any computable function there is an index e
such that ϕe(y) = f(e, y).

Corollary 4 gives the existence of n,m such that ϕn(x) = xn and
Dom(ϕm) = {m}.2

Many of the uses of the Recursion Theorem in computability-theoretic
constructions can be summed up as building a Turing machine using
the index of the finished machine. The construction will have early on
a line something like “We construct a partial computable function ψ
and assume by the Recursion Theorem that we have an index e for ψ.”
The construction, which is computable, is itself the function for which
we seek a fixed point. When the construction is given the input e to be
interpreted as the index of a partial computable function, it can use e
to produce e′, which is an index of the function ψ it is trying to build.
The Recursion Theorem says the construction will have a fixed point,
some i such that i and i′ both index the same function, which must be
ψ. Furthermore this fixed point will be computable from an index for
the construction itself.

Application of the Recursion Theorem to a construction depends on
the construction being uniform. A process is uniform if its definition
does not depend on the values it is given as input; that is, if it acts like
a function, which is defined ahead of time and then acts in particular
ways based on the specific inputs. Uniformity allows the construction
to have an index from which to compute the fixed point.

Our first extension of the Recursion Theorem gives a fixed point of
sorts for functions of two inputs.

Theorem 5 (Recursion Theorem with Parameters, Kleene). If f(x, y)
is a total computable function, then there is a total computable function
n(y) such that ϕn(y) = ϕf(n(y),y) for all y.

Proof. Let the index e code the function

ϕe(x, y, z) =

{
ϕϕx(x,y)(z) if ϕx(x, y)↓;
↑ otherwise.

1Were they not homework assignments, I would prove Corollaries 3 and 4 in the
paper.

2Likewise, I would explain/derive these applications.



4 REBECCA WEBER

By the S-m-n Theorem 1 there is a total computable function d(x, y)
such that ϕd(x,y)(z) = ϕe(x, y, z). Since f and d are both partial com-
putable, there is an index v such that ϕv(x, y) = f(d(x, y), y). Then
n(y) = d(v, y) is a fixed point for f , since unpacking the definitions of
n, d and v (and then repacking n) we see

ϕn(y) = ϕd(v,y) = ϕϕv(v,y) = ϕf(d(v,y),y) = ϕf(n(y),y).

�

In fact we may replace the total function f(x, y) with a partial func-
tion ψ(x, y) and have total computable n such that whenever ψ(n(y), y)
is defined, n(y) is a fixed point. The proof is identical to the proof of
the recursion theorem with parameters. Note that the parametrized
version implies the original version by considering functions which de-
pend only on their first input (in that case n(y) is a constant function
and may be viewed as simply a value n).

The second generalization of the Recursion Theorem we will include
is the Relativized Recursion Theorem, which also allows parameters.
It implies the previous two by assigning the oracle ∅ to all functions.
The notion of relativization is one of fixing some set A and always
working with A as your oracle: working relative to A. Then com-
putability becomes computability in A (being equal to ϕA

e for some e,
also called A-computability) and enumerability become enumerability
in A (being equal to WA

e := Dom(ϕA
e ) for some e). In general when a

computability-theoretic theorem is relativized, every function and set
acquires an oracle, but the S-m-n Theorem and Recursion Theorem
are exceptions, as explained below.

Theorem 6 (Relativized S-m-n Theorem). For every m,n ≥ 1 there
exists a one-to-one computable function Sm

n of m+ 1 variables so that
for all sets A ⊆ N and for all e, y1, . . . , ym ∈ N,

ϕA
Sm

n (e,y1,...,ym)(z1, . . . , zn) = ϕA
e (y1, . . . , ym, z1, . . . , zn).

The proof is essentially identical to the proof of the original S-m-
n Theorem 1, because the definition of an oracle machine does not
depend on the particular oracle in use. That is, the definition of an
oracle computation is uniform. That allows the function Sm

n to be
not just computable in A, but computable. The Relativized Recursion
Theorem, below, is as a consequence able to produce a fixed point com-
putably from an index for the function f , instead of just A-computably.

Theorem 7 (Relativized Recursion Theorem (with Parameters), Kleene).
Let A ⊆ N. If f(x, y) is an A-computable function, then there is a com-
putable function n(y) such that ϕA

n(y) = ϕA
f(n(y),y) for all y. Moreover,



THE RECURSION THEOREM (FINAL) 5

n does not depend on A; namely, if f(x, y) = ϕA
e (x, y), n(y) can be

found uniformly in e.

Proof. Let the index e code the function

ϕA
e (x, y, z) =

{
ϕA

ϕx(x,y)(z) if ϕx(x, y)↓;
↑ otherwise.

By the Relativized S-m-n Theorem there is a total computable func-
tion d(x, y) such that ϕA

d(x,y)(z) = ϕA
e (x, y, z). Since f and d are both

computable in A, there is an index v such that ϕA
v (x, y) = f(d(x, y), y).

Then n(y) = d(v, y) is a fixed point for f , since unpacking the defini-
tions of n, d and v (and then repacking n) we see

ϕA
n(y) = ϕA

d(v,y) = ϕA
ϕA

v (v,y) = ϕA
f(d(v,y),y) = ϕA

f(n(y),y).

�

Our final result is an application of the Relativized Recursion Theo-
rem to the structure of Turing degrees. Recall that the Turing degrees
are the quotient structure of P(N) under Turing equivalence, and they
are partially ordered by ≤T , Turing reduction.

Definition 8. The Turing jump of a set A, denoted A′, is the Halting
Set relativized to A. That is, A′ = {e : ϕA

e (e)↓}.

If A ≤T B, then A′ ≤T B′ (and hence the jump is a well-defined
operation on degrees), but it may be that A <T B and A′ ≡T B′.
We recall that the degree of computable sets is denoted 0 and hence
the degree of the Halting Set is 0′. All degrees below 0′ must have
jumps between 0′ and 0′′. Degrees on the upper and lower extremes are
called high and low, respectively. The following definition generalizes
the notions of lowness and highness.

Definition 9. For each n > 0, define a degree a ≤ 0′ to be lown

(highn) if 0(n) = a(n) (a(n) = 0(n+1)). A set A is lown (highn) exactly
when deg(A) is. We use lown and highn also to denote the collection
of all lown or highn degrees. For convenience, we set low0 = {0} and
high0 = {0′}.

Note that once a degree jumps to a jump of ∅, its future jumps all
match ∅’s, so lown ⊆ lown+1 and highn ⊆ highn+1. We state without
proof that this containment is proper; the result is a corollary of the
Jump Theorem 12. All proofs omitted below may be found in Soare
[6], Chapter VIII §3.

Proposition 10. For all n ∈ N, lown 6= lown+1 and highn 6= highn+1.



6 REBECCA WEBER

In some sense the low degrees are “close to” computable, and the
high degrees are “close to” complete. The hierarchy of lown and highn

degrees gradually carves out more and more of the c.e. degrees as n
increases: low1 (or just low) degrees are near 0, low2 degrees come
a little further up, low3 a little further up yet; meanwhile the highn

degrees are creeping down from near 0′. It is easy to see that they
cannot overlap, but natural to ask whether they “meet in the middle”.
Another corollary of the Jump Theorem 12, which uses the Relativized
Recursion Theorem, says no, there is a gap. Degrees which are c.e. but
neither lown nor highn for any n are called intermediate.

Proposition 11 (Martin [3], Lachlan [2], Sacks [5]). There is an in-
termediate c.e. degree a. That is, 0(n) < a(n) < 0(n+1) for all n.

Proposition 11 was proved independently by Martin and Lachlan,
using different sorts of priority arguments. Sacks gave a shorter proof
based on his Jump Theorem; before giving his proof we state that the-
orem. The fully general statement below gives the relativized version
of the way it is usually stated (Y = ∅; see Soare [6] Theorem VIII.3.1)
and combines it with a further observation by Sacks (adding the set D;
see Soare [6] Remark VIII.3.2).

Theorem 12 (Sacks Jump Theorem [4]). Suppose we are given sets
Y , S, C, and D such that

(i) D is c.e. in Y ,
(ii) S is c.e. in Y ′,
(iii) D′, Y ′ ≤T S,
(iv) Y <T C ≤T Y

′, and
(v) C 6≤T D.

Then there exists a set A such that A 6≤T Y , A is c.e. in Y , A′ ≡T S,
C 6≤T A and D ≤T A. Furthermore, an index of A can be found
uniformly from indices for S, C, and D.

In other words, if the set S could be the jump of a Y -c.e. set, then
up to Turing equivalence it is. If B is a Y -c.e. set, then Y ≤T B gives
Y ′ ≤T B′ and B ≤T Y ′ gives that B′ must be c.e. in Y ′; the theorem
says those properties fully specify degrees that are jumps. Moreover
we have control over what sort of Y -c.e. set we have jumped from. The
C 6≤T A property is cone avoidance: we can choose this “jump inverse”
A to be outside the Turing cone above any Y ′-computable set C that
is reasonable; that is, any C that is not Y -computable. We can also
ensure A is able to compute another specific Y -c.e. set; again, it must
be reasonable: if D′ 6≤T S = A′, we can’t have D ≤T A. The last



THE RECURSION THEOREM (FINAL) 7

condition ensures C and D are compatible. This theorem is proved by
an infinite injury construction.

Finally, we give the proof of the existence of an intermediate degree,
in more detailed form than that given in Sacks [5] and Soare [6]. Recall
that the join of two sets, A ⊕ B, is their disjoint union; its degree is
the least upper bound of the degrees of A and B.

Proof of 11 (Sacks [5]). Given Y and S = (W Y ′
x ) ⊕ Y ′ (note that S is

c.e. in Y ′ and computes Y ′), apply the Jump Theorem 12 with C = Y ′

and D = Y . Note that we can fix indices of machines that compute
exactly their oracle and the jump of their oracle, so (using composition
for S) the only index that varies is x. The uniformity of the Jump
Theorem then gives a total computable function q such that W Y

q(x) is
the set A from the theorem. A 6≤T Y and D ≤T A combine to give
Y <T A, and A c.e. in Y and C 6≤T A combine to give A <T Y ′. In
short, for every x ∈ N and Y ⊆ N,

Y <T W
Y
q(x) <T Y

′ and (W Y
q(x))

′ ≡T (W Y ′

x )⊕ Y ′.

Now apply the Relativized Recursion Theorem 7 to obtain a fixed
point n such that W Y

q(n) = W Y
n for all Y ⊆ N. Define a = deg(W ∅

n).

We prove by induction that a is intermediate by proving (W ∅
n)(m) ≡T

W ∅(m)

n . Then, since W ∅(m)

n = W ∅(m)

q(n) , we have ∅(m) <T W
∅(m)

n <T ∅(m+1).

The case m = 0 is by definition. Suppose for some m ≥ 0 we have
proved (W ∅

n)(m) ≡T W
∅(m)

n . Then

((W ∅
n)(m))′ ≡T (W ∅(m)

n )′ = (W ∅(m)

q(n) )′ ≡T (W (∅(m))′

n )⊕ (∅(m))′

= (W ∅(m+1)

n )⊕ ∅(m+1) = (W ∅(m+1)

q(n) )⊕ ∅(m+1).

Since ∅(m+1) <T W
∅(m+1)

q(n) , the join (W ∅(m+1)

q(n) )⊕∅(m+1) is actually Turing

equivalent to W ∅(m+1)

q(n) , and hence (using once more the fact that n is a

fixed point for q), (W ∅
n)(m+1) ≡T W

∅(m+1)

n . �

References

[1] Kleene, S.C. Introduction to Metamathematics. Van Nostrand, New York, 1952.
[2] Lachlan, A.H. On a problem of G.E. Sacks. Proceedings of the American Math-

ematical Society 16(1965): 972–979.
[3] Martin, D.A. On a question of G.E. Sacks. Journal of Symbolic Logic 31(1966):

66–69.
[4] Sacks, G.E. Degrees of Unsolvability. Annals of Mathematical Studies No. 55,

Princeton University Press, Princeton, N.J., 1963.
[5] Sacks, G.E. On a theorem of Lachlan and Martin. Proceedings of the American

Mathematical Society 18(1967): 140-141.
[6] Soare, R.I. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.


