What Is Computability Theory?

Rebecca Weber, Dartmouth College WIM at MIT, March 3, 2009

Computability

We call a function computable if there is a computer program that executes it.

What are the limits of computational power? We need to abstract the essentials.

Also:

- Want to be independent of hardware advances.
- Don't want to set limits in advance on time and memory use.

Essential Components

- memory that can be read from and written to
- arithmetic
- if...then
- looping (for, while)

More than this list is purely to make it easier for humans to use.

BASIC

10 REM LANDING
20 REM A flying saucer coming in for a landing.
30 FOR FREQ\% $=600$ TO 50 STEP -25
$40 \quad$ SOUND FREQ\%, 2
$50 \quad$ SOUND 32767,. 5
60 NEXT FREQ\%
70 END

$$
\begin{gathered}
\mathrm{C}++ \\
\text { (countdown program) }
\end{gathered}
$$

```
#include <iostream>
using namespace std;
int main ()
{
    for (int n=10; n>0; n--) {
        cout << n << ", ";
    }
    cout << "FIRE!\n";
    return 0;
}
```


FALSE
 (factorial program)

[\$1=~[\$1-f;!*]?]f:
"calculate the factorial of [1..8]: " B~ß'0-\$\$0>~ \8>|\$
"result: "
~[\f;!.]?
["illegal input!"]?"
"

Commonalities

- Finite sequence of symbols out of a finite alphabet (usually letters, numbers, and standard punctuation).
- Could be ordered somehow and each assigned a number.

Fix some programming language.

Enumeration (Listing)

Sequences on alphabet $\{a, b\}$ may be enumerated as follows:

1.	a	6.	bb	11.	baa
2.	b	7.	aaa	12.	bab
3.	aa	8.	aab	13.	bba
4.	ab	9.	aba	14.	bbb
5.	ba	10.	abb		\ldots

Presumably not all will be valid programs, but that's okay. We'll just consider those to be programs that do nothing.

A Counting Argument

- There are as many programs in a given language as there are natural numbers (countably many).
- There are as many functions on the natural numbers as there are real numbers (uncountably many).

The latter set is strictly larger!

In fact, there are uncountably many noncomputable functions.

The Halting Problem

Fix an enumeration of programs P_{0}, P_{1}, \ldots We'll define a function f that is not computed by any program on the list.

$$
f(x)= \begin{cases}1 & \text { if } P_{x}(x) \text { halts (gives an output) } \\ 0 & \text { if } P_{x}(x) \text { goes into an infinite loop }\end{cases}
$$

Proof by contradiction: from f, define g :

$$
g(x)= \begin{cases}P_{x}(x)+1 & \text { if } f(x)=1 \\ 0 & \text { if } f(x)=0\end{cases}
$$

If we can write f as a program we can also write g as a program, meaning $g=P_{e}$ for some e. But then if $P_{e}(e)$ is defined, $g(e)=P_{e}(e)+1 \neq P_{e}(e)$, and if $P_{e}(e)$ is not defined, $g(e)=0$, again $\neq P_{e}(e)$.

Not Just Functions

It is useful to work in terms of subsets of the natural numbers for our continuing exploration.

Notation:

- $\mathbb{N}=\{0,1,2, \ldots\}$, the natural numbers.
- $x \in A$ is read " x is in A " or " x is a member of A " or " x is an element of A ", where A is a set.
- $A \subseteq B$ is read " A is a subset of B " and means all elements of A are also elements of $B ; B$ may or may not have additional elements not in A.

Sets, Sequences, Functions

We are very loose with these objects and blur them together.

- The function $f: \mathbb{N} \rightarrow\{0,1\}$ is associated with the sequence with entries $f(0), f(1), f(2), \ldots$, in order.
- The sequence S is associated with the set A where $n \in A$ if the $n^{t h}$ entry of S is 1 , and $n \notin A$ otherwise.

Example

Define f by $f(n)=$ the remainder of n upon division by 2 . This function is associated with the sequence 010101010101... and the set of odd numbers.

Comparing Noncomputability

If we choose some set A and allow our programs to include statements of the form "if $n \in A$, then...", we are working with oracle programs. If A is noncomputable, we can now compute more sets than we could before (e.g., A itself).
[If A is computable we've added nothing. Why?]
Notation: if B can be computed by a program with oracle A, we say B is Turing reducible to A and write $B \leq_{T} A$.

It Goes Up and Up

Call the set associated with the Halting Problem H, and give it to every program in our enumeration as an oracle (the list is now written $\left.P_{0}^{H}, P_{1}^{H}, \ldots\right)$. Define a new f :

$$
f(x)= \begin{cases}1 & \text { if } P_{x}^{H}(x) \text { halts (gives an output) } \\ 0 & \text { if } P_{x}^{H}(x) \text { goes into an infinite loop }\end{cases}
$$

The same proof as before shows f is not computable by any P_{e}^{H}, and this proof is not dependent on H. No matter what oracle A we choose, there are sets $B \not \mathbb{L}_{T} A$ - in fact, uncountably many.

This f is the Halting Problem relativized to H.

Turing Degrees

If we call the set associated with our new halting function H^{\prime}, we have $H \lesseqgtr_{T} H^{\prime}$. Iterating we can get $H^{\prime} \lesseqgtr_{T} H^{\prime \prime} \lesseqgtr_{T} H^{\prime \prime \prime} \lesseqgtr_{T} \ldots$ forever, because we always have uncountably many sets left.

The relation $A \equiv_{T} B$ defined as $A \leq_{T} B \& B \leq_{T} A$ partitions the subsets of \mathbb{N} into boxes (equivalence classes) called Turing degrees.

Each Turing degree contains countably many sets.
There are uncountably many Turing degrees.

Computably Enumerable Sets

A natural collection of sets to consider to be "next-larger" than the computable sets is the computably enumerable (c.e.) sets.
A is c.e. if its elements may be listed out computably, but not necessarily in order.

Each program P_{e} is associated with two c.e. sets: its domain and its range. When taken for all programs, either one covers all the c.e. sets, and traditionally we use the domain.

We denote $\operatorname{dom}\left(P_{e}\right)$ by W_{e}, and call it the $e^{t h}$ c.e. set.

Facts About C.E. Sets

- A set is computable if and only if its elements may be enumerated in order.
- A set A is computable if and only if both A and \bar{A} are c.e.
($\bar{A}=$ complement of $A=$ everything in \mathbb{N} but not A)
- All c.e. sets are Turing reducible to the Halting Set.
- The Halting Set is c.e. itself.
- There are non-c.e. sets A such that $A \leq{ }_{T} H$ as well.

Things We Study I LUB and GLB for Degrees

We say $\operatorname{deg}(A) \leq \operatorname{deg}(B)$ if $A \leq_{T} B$. This makes the degrees a partially ordered set that we can study.

- Every pair of degrees has a least upper bound.
- Not every pair of degrees has a greatest lower bound.
- For some but not all A there is B so that $\operatorname{glb}(\operatorname{deg}(A), \operatorname{deg}(B))$ exists and equals $\operatorname{deg}(\emptyset)$.
- For some but not all A there is B so that $\operatorname{lub}(\operatorname{deg}(A), \operatorname{deg}(B))=\operatorname{deg}(H)$.

Things We Study II Effects of Relativization

If we relativize the halting set to a computable set, its Turing degree remains $\operatorname{deg}(H)$.

- If $A \leq_{T} B, H^{A} \leq_{T} H^{B}$, but \leq_{T} can change to \equiv_{T}.
- There are noncomputable sets A such that $H^{A} \equiv_{T} H$ (A is called low).
- There are sets $A \leq T H$ such that $H^{A} \equiv{ }_{T} H^{\prime}(A$ is called high).

Tools We Use (I and Only) Priority Constructions

(A very sketchy look at constructing a noncomputable low set A.)

Goal
A is c.e.
\bar{A} is not c.e. Make every infinite W_{e} intersect A
$H^{A} \equiv{ }_{T} H \quad$ Keep A and hence H^{A} from "changing too much" during construction

Conflicts and Resolutions I

On the one hand, we want to put things into A when we see the opportunity to make A intersect W_{e}. On the other hand, putting things into A might change H^{A}.

Give a priority ordering to construction requirements:

- Pos0: Make W_{0} intersect A
- Neg0: Keep $H^{A \prime}$ s value on 0 constant
- Pos1: Make W_{1} intersect A
- Neg1: Keep H^{A} s value on 1 constant
... and so forth.

Conflicts and Resolutions II

- The Neg requirements forbid enumerating certain elements into A (set restraint on A): namely, $\operatorname{Neg} 22$ restrains the elements that tell us whether 22 is in H^{A} or not.
- If Neg22 says "nothing below 140 can enter A ", Pos23, Pos24 and beyond must obey it. Pos22, Pos21 and up can ignore it.
- If W_{23} is infinite, Pos23 will still find a number in W_{23} it's allowed to put in A. If W_{23} is finite we don't care about it.
- Each Pos requirement puts at most one number in A, so Neg can make sure its value of H^{A} changes only finitely often.

In a Nutshell

Priority arguments allow us to cope with information that is being given gradually and may be incomplete or even incorrect during the course of the construction.

- We may act wrongly, but not acting might be just as wrong.

If we set things up so errors can be overcome, we can keep our construction at a known level of computability and hence make assertions about the computability of the set we're constructing.

Takehome Message

Computable functions are great, but noncomputable ones are more interesting.

THANK YOU!

