
Chapter 7 Supplemental Notes
Math 29 Spring 2011

1. Index set examples

1. Fin is Σ2-complete. Step 1: show it is in Σ2.

Fin = {e : |We| <∞} = {e : (∃N)(∀n)(∀s) (n > N ⇒ ϕe,s(n)↑)}

This gives us the chance to see why duplicates of the same quantifier don’t affect complexity.
If we wanted, we could use the following formula:

(∃N)(∀x) [(∀n < x)(∀s < x) (n > N ⇒ ϕe,s(n)↑)]

The part in square brackets is still a computable relation, and this formula is true if and
only if the original version is true.

We will come back to Step 2: Every Σ2 set 1-reduces to Fin.

2. Tot is Π2-complete. Step 1:

Tot = {e : We = N} = {e : (∀n)(∃s)(ϕe,s(n)↓}

Step 2 will happen in conjunction with Step 2 for Fin.

3. Rec is Σ3-complete. Rec = {e : We is computable}, so the leading existential quantifier
says that there must be an index ê giving We’s characteristic function. For ϕê to be that
function, it must be total and have output 1 on n if n ∈ We and output 0 otherwise. Going
from the “not in We” side is hard, though, because we only have an enumeration, so we need
to make sure ϕê is total with codomain {0, 1} and membership in We is equivalent to an
output of 1.

For every n, if n appears in We at some stage we must have ϕê(n)↓= 1, but not necessarily
at the same stage. Likewise halting with output 1 says n must appear in We eventually, but
not at a specific stage.

Rec = {e : (∃ê)(∀n, s)(∃t)[(ϕê,t(n)↓∈ {0, 1} &

(n ∈ We,s ⇒ ϕê,t(n) = 1) & (ϕê,s(n) = 1⇒ n ∈ We,t)]}
We omit Step 2 of the completeness proof.

That Inf is Π2-complete comes from the proof for Fin. Showing Con is Π2 is homework,
and that it is actually complete will follow, with Tot, from the completeness proof for Fin.
Note that because the S-m-n Theorem produces a 1-1 computable function, the proof that
K is Turing-complete shows it is Σ1-complete as well.

Step 2. Showing completeness.
For any given Σ2 set A, we must produce a computable 1-1 function f such that x ∈

A ⇔ f(x) ∈ Fin. For some computable relation R, x ∈ A ⇔ (∃y)(∀z)R(x, y, z), by def-
inition of being Σ2. It turns out to be more useful to take the complement: x ∈ A ⇔
(∀y)(∃z)¬R(x, y, z), because we can then “cap off” the leading universal quantifier at higher

1

and higher points, looking to see if there is a z for each of the finitely many y. This allows
us to define a partial computable function:

ψ(x,w) =

{
0 (∀y ≤ w)(∃z)¬R(x, y, z)
↑ otherwise

This is partial computable despite the unbounded existential quantifier because we can dove-
tail the (finitely-many) searches for a z to match each y ≤ w. If all y have such a z we will
eventually find it, and if not, it is simply a divergent unbounded search. As usual, ψ is some
ϕe, we can use s-m-n to push x into the index, e is fixed by A and we end up with a 1-1
total computable f such that ϕf(x)(w) = ψ(x,w).

If x ∈ A, all y have a matching z, every w gives a convergent search, and ϕf(x) is the
constant 0 function. If x ∈ A, there is some y that has no matching z, and ϕf(x) will diverge
on all w that surpass the least such y. That is,

x ∈ A ⇒ Wf(x) finite ⇒ f(x) ∈ Fin, and

x ∈ A ⇒ (∀w)(ϕf(x)(w) = 0) ⇒ f(x) ∈ Con ⊂ Tot ⊂ Inf = Fin.

2. A picture of the arithmetic hierarchy

Each set is contained in those directly above it and those above it to which it is connected
by lines.

∅′′-c.e. (Rec) Σ3 Π3

∆3

Σ2 Π2

∆2

Σ1 Π1

∆1

∅′′-co-c.e.

computable from ∅′′

∅′-c.e. (Fin) ∅′-co-c.e. (Inf, Tot, Con)

computable from ∅′

c.e. co-c.e.

= ∆0 = Π0 = Σ0; computable

2

