Chapter 7 Supplemental Notes
 Math 29 Spring 2011

1. Index set examples

1. Fin is Σ_{2}-complete. Step 1: show it is in Σ_{2}.

$$
\operatorname{Fin}=\left\{e:\left|W_{e}\right|<\infty\right\}=\left\{e:(\exists N)(\forall n)(\forall s)\left(n>N \Rightarrow \varphi_{e, s}(n) \uparrow\right)\right\}
$$

This gives us the chance to see why duplicates of the same quantifier don't affect complexity. If we wanted, we could use the following formula:

$$
(\exists N)(\forall x)\left[(\forall n<x)(\forall s<x)\left(n>N \Rightarrow \varphi_{e, s}(n) \uparrow\right)\right]
$$

The part in square brackets is still a computable relation, and this formula is true if and only if the original version is true.

We will come back to Step 2: Every Σ_{2} set 1-reduces to Fin.
2. Tot is Π_{2}-complete. Step 1:

$$
\operatorname{Tot}=\left\{e: W_{e}=\mathbb{N}\right\}=\left\{e:(\forall n)(\exists s)\left(\varphi_{e, s}(n) \downarrow\right\}\right.
$$

Step 2 will happen in conjunction with Step 2 for Fin.
3. Rec is Σ_{3}-complete. Rec $=\left\{e: W_{e}\right.$ is computable $\}$, so the leading existential quantifier says that there must be an index \hat{e} giving W_{e} 's characteristic function. For $\varphi_{\hat{e}}$ to be that function, it must be total and have output 1 on n if $n \in W_{e}$ and output 0 otherwise. Going from the "not in W_{e} " side is hard, though, because we only have an enumeration, so we need to make sure $\varphi_{\hat{e}}$ is total with codomain $\{0,1\}$ and membership in W_{e} is equivalent to an output of 1 .

For every n, if n appears in W_{e} at some stage we must have $\varphi_{\hat{e}}(n) \downarrow=1$, but not necessarily at the same stage. Likewise halting with output 1 says n must appear in W_{e} eventually, but not at a specific stage.

$$
\begin{aligned}
\operatorname{Rec}=\{e & :(\exists \hat{e})(\forall n, s)(\exists t)\left[\left(\varphi_{\hat{e}, t}(n) \downarrow \in\{0,1\} \&\right.\right. \\
& \left.\left.\left(n \in W_{e, s} \Rightarrow \varphi_{\hat{e}, t}(n)=1\right) \&\left(\varphi_{\hat{e}, s}(n)=1 \Rightarrow n \in W_{e, t}\right)\right]\right\}
\end{aligned}
$$

We omit Step 2 of the completeness proof.
That Inf is Π_{2}-complete comes from the proof for Fin. Showing Con is Π_{2} is homework, and that it is actually complete will follow, with Tot, from the completeness proof for Fin. Note that because the $S-m-n$ Theorem produces a 1-1 computable function, the proof that K is Turing-complete shows it is Σ_{1}-complete as well.

Step 2. Showing completeness.
For any given Σ_{2} set A, we must produce a computable 1-1 function f such that $x \in$ $A \Leftrightarrow f(x) \in$ Fin. For some computable relation $R, x \in A \Leftrightarrow(\exists y)(\forall z) R(x, y, z)$, by definition of being Σ_{2}. It turns out to be more useful to take the complement: $x \in \bar{A} \Leftrightarrow$ $(\forall y)(\exists z) \neg R(x, y, z)$, because we can then "cap off" the leading universal quantifier at higher
and higher points, looking to see if there is a z for each of the finitely many y. This allows us to define a partial computable function:

$$
\psi(x, w)= \begin{cases}0 & (\forall y \leq w)(\exists z) \neg R(x, y, z) \\ \uparrow & \text { otherwise }\end{cases}
$$

This is partial computable despite the unbounded existential quantifier because we can dovetail the (finitely-many) searches for a z to match each $y \leq w$. If all y have such a z we will eventually find it, and if not, it is simply a divergent unbounded search. As usual, ψ is some φ_{e}, we can use $s-m-n$ to push x into the index, e is fixed by A and we end up with a 1-1 total computable f such that $\varphi_{f(x)}(w)=\psi(x, w)$.

If $x \in \bar{A}$, all y have a matching z, every w gives a convergent search, and $\varphi_{f(x)}$ is the constant 0 function. If $x \in A$, there is some y that has no matching z, and $\varphi_{f(x)}$ will diverge on all w that surpass the least such y. That is,

$$
\begin{gathered}
x \in A \Rightarrow W_{f(x)} \text { finite } \Rightarrow f(x) \in \text { Fin, and } \\
x \in \bar{A} \Rightarrow(\forall w)\left(\varphi_{f(x)}(w)=0\right) \Rightarrow f(x) \in \operatorname{Con} \subset \operatorname{Tot} \subset \operatorname{Inf}=\overline{\operatorname{Fin}}
\end{gathered}
$$

2. A Picture of the arithmetic hierarchy

Each set is contained in those directly above it and those above it to which it is connected by lines.

