Counting Square-Free Integers

Problem 1. Let $p>1$. By comparing the sum with an integral as in class, show that for any $x>1$

$$
\sum_{n>x} \frac{1}{n^{p}}=O\left(x^{1-p}\right)
$$

In Friday's lecture we used this fact with $p=2$.

Problem 2. Let n be a positive integer. From previous homework, we know that we can write $n=q m^{2}$ where q is either 1 or square-free. Let d be a positive integer. Show that $d^{2} \mid n$ if and only if $d \mid m$.

Problem 3. If μ denotes the Möbius function, then

$$
\mu^{2}(n)=\left\{\begin{array}{lc}
1 & \text { if } n \text { is squarefree or } 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence, μ^{2} detects square-free integers.
a. If $n=q m^{2}$ with q square-free, as in the previous problem, show that $\mu^{2}(n)=\delta(m)$.
b. Use Problem 2 and the fact that $\delta=\mathbf{1} * \mu$ to show that

$$
\mu^{2}(n)=\sum_{d^{2} \mid n} \mu(d) .
$$

Problem 4. Let $Q(x)$ denote the number of square-free integers less than or equal to x.
a. Show that $Q(x)$ is the summatory function of μ^{2}. That is, show that

$$
Q(x)=\sum_{n \leq x} \mu^{2}(n)
$$

[Note: This is not the book's definition of a summatory function.]
b. Use Problem 3b and the method used in class to show that

$$
Q(x)=\frac{6}{\pi^{2}} x+O(\sqrt{x})
$$

