Extra Problem Set 1

Problem 1. Let $a \in \mathbb{Z}, n \in \mathbb{Z}^{+}$and $g(x)=(x+a)^{n}$. Using only the formal definition of the derivative of a polynomial and the binomial theorem, prove that

$$
g^{\prime}(x)=n(x+a)^{n-1}
$$

You may not use results from calculus.

Problem 2. Use the result of Problem 1 to show that for $k \leq n$

$$
g^{(k)}(x)=n(n-1)(n-2) \cdots(n-(k-1))(x-a)^{n-k}
$$

where, as before, $g(x)=(x+a)$.
Problem 3. Let $f(x)$ be a polynomial with integer coefficients. Let h be the number of solutions to $f(x) \equiv 0\left(\bmod p^{2}\right)$ and suppose that $p \nmid h$. Show that $f(x) \equiv 0\left(\bmod p^{k}\right)$ has a solution for all positive integers k.

Problem 4. Show that $x^{2}+1 \equiv 0\left(\bmod 5^{k}\right)$ has solutions for every $k \geq 1$. [Since $x^{2}+1=0$ has no integer (or even real) solutions, this shows that the existence of solutions $\bmod p^{k}$ for every k does not imply the existence of integer solutions.]

