Math 24
Winter 2010
Special Assignment due Monday, March 1
Sample Solution
Let V be any vector space over F and W be a subspace of V. We know that V / W is a vector space, and that $T(x)=x+W$ is a linear transformation from V to V / W.

Assignment: Let α be a basis for W that can be extended to a basis $\alpha \cup \beta$ for V (where $\alpha \cap \beta=\emptyset$). Show that $\{x+W \mid x \in \beta\}$ is a basis for V / W.

Note that we have not assumed V is finite-dimensional, so α and β may be infinite.
On the next pages are two solutions to this problem. The first proof is specific to the situation here.

The second proof actually shows a more general result: Whenever $T: V \rightarrow Z$ is a linear transformation, $W=N(T)$, and α is a basis for W that can be extended to a basis $\alpha \cup \beta$ for V (where $\alpha \cap \beta=\emptyset$), we have that $\{T(x) \mid x \in \beta\}$ is a basis for $R(T)$. This proves our result, since we know $R(T)=V / W$.

If V is finite-dimensional, this more general result proves the Dimension Theorem, since $\operatorname{dim}(W)=\operatorname{size}(\alpha), \operatorname{dim}(V)=\operatorname{size}(\alpha)+\operatorname{size}(\beta)$, and (by this result) $\operatorname{dim}(R(T))=\operatorname{size}(\beta)$. This is actually how the Dimension Theorem is proven.

Solution I:

Let $B=\{x+W \mid x \in \beta\}$. To show that B is a basis for V / W, we must show that B spans V / W and that B is linearly independent.

First, we show that B spans V / W. Let $x+W$ be any element of V / W. We must show that $x+W$ is in the span of B.

Because $\alpha \cup \beta$ spans V, we may write

$$
x=a_{1} w_{1}+\cdots+a_{m} w_{m}+b_{1} v_{1}+\cdots+b_{n} v_{n},
$$

where $w_{i} \in \alpha$ and $v_{i} \in \beta$. Set $y=b_{1} v_{1}+\cdots+b_{n} v_{n}$. Then $x-y=a_{1} w_{1}+\cdots+a_{m} w_{m} \in W$, so by an earlier assignment,

$$
x+W=y+W=\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right)+W=b_{1}\left(v_{1}+W\right)+\cdots+b_{n}\left(v_{n}+W\right) .
$$

We have expressed $x+W$ as a linear combination of elements of B, which shows that $x+W$ is in the span of B.

Now we show that B is linearly independent. To do this, we suppose that some linear combination of elements of B equals zero,

$$
b_{1}\left(v_{1}+W\right)+\cdots+b_{n}\left(v_{n}+W\right)=0_{V / W}
$$

where the v_{i} are distinct elements of β. We must show that $b_{1}=\cdots=b_{n}=0$.
We have that

$$
0_{V / W}=b_{1}\left(v_{1}+W\right)+\cdots+b_{n}\left(v_{n}+W\right)=\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right)+W
$$

Now $0_{V / W}=0+W=W$. Since we showed that $x \in x+W$, we can conclude that

$$
b_{1} v_{1}+\cdots+b_{n} v_{n} \in W
$$

Since α is a basis for W, we can write

$$
b_{1} v_{1}+\cdots+b_{n} v_{n}=a_{1} w_{1}+\cdots+a_{m} w_{m}
$$

where the w_{i} are distinct elements of α. Since $\alpha \cap \beta=\emptyset$, the v_{i} and w_{i} are distinct elements of $\alpha \cup \beta$, and we have

$$
b_{1} v_{1}+\cdots+b_{n} v_{n}-a_{1} w_{1}-\cdots-a_{m} w_{m}=0 .
$$

Since $\alpha \cup \beta$ is linearly independent, we must have $b_{1}=\cdots=b_{n}=a_{1}=\cdots=a_{n}=0$.

Solution II:

We will use the fact that $T(x)=x+W$ is a linear transformation from V to V / W with $R(T)=V / W$ and $N(T)=W$. We let $B=\{x+W \mid x \in \beta\}=\{T(x) \mid x \in \beta\}$, and show B is a basis for $R(T)$. To do this, we must show that B spans $R(T)$ and that B is linearly independent.

First, we show that B spans $R(T)$. Let $T(x)$ be any element of $R(T)$. We must show that $T(x)$ is in the span of B.

Because $\alpha \cup \beta$ spans V, we may write

$$
x=a_{1} w_{1}+\cdots+a_{m} w_{m}+b_{1} v_{1}+\cdots+b_{n} v_{n},
$$

where $w_{i} \in \alpha$ and $v_{i} \in \beta$. Since $w_{i} \in \alpha \subseteq W=N(T)$, we know $T\left(w_{i}\right)=0$. Now

$$
\begin{gathered}
T(x)=T\left(a_{1} w_{1}+\cdots+a_{m} w_{m}+b_{1} v_{1}+\cdots+b_{n} v_{n}\right)= \\
a_{1} T\left(w_{1}\right)+\cdots+a_{m} T\left(w_{m}\right)+b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right)= \\
a_{1}(0)+\cdots+a_{m}(0)+b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right)=b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right) .
\end{gathered}
$$

We have expressed $T(x)$ as a linear combination of elements of B, which shows that $T(x)$ is in the span of B.

Now we show that B is linearly independent. To do this, we suppose that some linear combination of elements of B equals zero,

$$
b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right)=0,
$$

where the v_{i} are distinct elements of β. We must show that $b_{1}=\cdots=b_{n}=0$.
We have

$$
0=b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right)=T\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right) .
$$

This means that

$$
b_{1} v_{1}+\cdots+b_{n} v_{n} \in N(T)=W .
$$

Since α is a basis for W, we can write

$$
b_{1} v_{1}+\cdots+b_{n} v_{n}=a_{1} w_{1}+\cdots+a_{m} w_{m}
$$

where the w_{i} are distinct elements of α. Since $\alpha \cap \beta=\emptyset$, the v_{i} and w_{i} are distinct elements of $\alpha \cup \beta$, and we have

$$
b_{1} v_{1}+\cdots+b_{n} v_{n}-a_{1} w_{1}-\cdots-a_{m} w_{m}=0
$$

Since $\alpha \cup \beta$ is linearly independent, we must have $b_{1}=\cdots=b_{n}=a_{1}=\cdots=a_{n}=0$.

