Math 24
Winter 2010
Comment on Special Assignment due Monday, February 22

We define a function T from V to V / W by $T(x)=x+W$.
Many people are confused about how to determine $N(T)$. Many people are also mixing up elements of V and elements of V / W. Vectors in V and cosets in V / W are entirely different animals.

Here is an example:
Suppose $V=\mathbb{R}^{2}$ and W is the x-axis. Then

$$
(a, b)+W=\{(a, b)+(x, y) \mid(x, y) \in W\}=\{(a, b)+(x, 0) \mid x \in \mathbb{R}\}=\{(x+a, b) \mid x \in \mathbb{R}\}
$$

That is, $(a, b)+W$ is the line $y=b$. Notice that (a, b) is on that line.
So V / W is the set of horizontal lines in \mathbb{R}^{2}, and for $v \in \mathbb{R}^{2}, v+W$ is the horizontal line containing v.

To add cosets (in this case, lines) and multiply them by scalars, we use the definitions of these operations. The line $y=b$ is the coset $(0, b)+W$. (It is $(a, b)+W$ for any a. We just choose $a=0$ to make things simple.) Now if X is the line $y=b$ and Y is the line $y=c$, we can write $X=(0, b)+W$ and $Y=(0, c)+W$, so

$$
\begin{gathered}
X+Y=((0, b)+W)+((0, c)+W)=((0, b)+(0, c))+W=(0, b+c)+W \\
r X=r((0, b)+W)=(r(0, b)+W)=(0, r b)+W
\end{gathered}
$$

That is,

$$
\begin{gathered}
(\text { line } y=b)+(\text { line } y=c)=(\text { line } y=(b+c)) \\
r(\text { line } y=b)=(\text { line } y=r b)
\end{gathered}
$$

Recall that when you showed V / W satisfies the first four vector space axioms, you showed that the additive identity of V / W is

$$
0_{V / W}=0+W=\{0+w \mid w \in W\}=\{w \mid w \in W\}=W
$$

so in our example, the zero element of V / W is the x-axis.
Therefore in this example,
$N(T)=\{v \mid T(v)=0\}=\{v \mid v+W=x-a x i s\}=\{v \mid v$ is on the $x-$ axis $\}=x-$ axis.
Also, in this example, any element of V / W, any horizontal line X, is the horizontal line containing v for some point v, so $X=v+W=T(v)$, which shows X is in the range of T. We just showed that every element of V / W is in $R(T)$, so T is onto, and $R(T)=V / W$.

