Math 24
Winter 2010
Special Assignment due Monday, February 22
Let V be any vector space over F and W be a subspace of V. For any vector x in V, we defined the coset of W containing x to be

$$
x+W=\{x+w \mid w \in W\}
$$

We denote the collection of cosets of W in V by V / W.
It turns out that V / W forms a vector space over F, with operations defined by

$$
\begin{aligned}
& (x+W)+(y+W)=(x+y)+W \\
& a(x+W)=(a x)+W
\end{aligned}
$$

You may assume that this is true. (You proved part of this in the last two special homework assignments.)

Assignment: We can define a function T from V to V / W by $T(x)=x+W$.
Prove that T is a linear transformation.
Identify the null space and range of T.
If V is finite-dimensional, what can you conclude about the dimensions of V, W, and V / W ?

