Math 24
Winter 2010
Special Assignment due Monday, February 1
Let V be any vector space and W be a subspace of V. For any vector x in V, we define the coset of W containing x to be

$$
x+W=\{x+w \mid w \in W\} .
$$

We denote the collection of cosets of W in V by V / W.
For your last assignment, you proved that addition of cosets defined by

$$
(x+W)+(y+W)=(x+y)+W
$$

is well-defined.
Assignment: Prove that V / W, with addition defined as above, satisfies the first four vector space axioms.

Note: We can make a similar definition for other sorts of structures and substructures. For example, the integers \mathbb{Z} with addition and multiplication form a "commutative ring with unity." This is a structure that satisfies all the axioms for a field except possibly the existence of multiplicative inverses. The set of multiplies of n

$$
n \mathbb{Z}=\{n x \mid x \in \mathbb{Z}\}
$$

is a kind of substructure of \mathbb{Z} called an "ideal." This means it is closed under addition, and also under multiplication by any element of \mathbb{Z}. Now if we define cosets of $n \mathbb{Z}$ the same way we did above,

$$
x+n \mathbb{Z}=\{x+m \mid m \in n \mathbb{Z}\}
$$

we can define addition and multiplication of cosets

$$
(x+n \mathbb{Z})+(y+n \mathbb{Z})=(x+y)+n \mathbb{Z} \quad \text { and } \quad(x+n \mathbb{Z})(y+n \mathbb{Z})=(x y)+n \mathbb{Z}
$$

We get the structure $\mathbb{Z} / n \mathbb{Z}$, whose elements are cosets $0+n \mathbb{Z}, 1+n \mathbb{Z}, \ldots(n-1)+n \mathbb{Z}$. We called these elements $\overline{0}, \overline{1}, \ldots \overline{n-1}$.

That is where the notation $\mathbb{Z} / n \mathbb{Z}$ comes from.

