Math 24 Winter 2010 Quiz 9

1. A basis for the subspace $W \subseteq \mathbb{C}^3$ is $\beta = \{(1, i, 0)\}$. Find a basis for W^{\perp} .

 $W^{\perp} = \{v \mid \langle v, w \rangle = 0 \text{ for all } w \in W\}$, but because W consists only of multiples of (1, i, 0), we have $W^{\perp} = \{v \mid \langle v, (1, i, 0) \rangle = 0\}$.

Using the definition of inner product in \mathbb{C}^3 , we have $\langle (z_1, z_2, z_3), (1, i, 0) \rangle = z_1 - iz_2$, so W^{\perp} consists of all solutions to the equation $z_1 - iz_2 = 0$, which is equivalent to $z_1 = iz_2$.

Hence W^{\perp} consists of all vectors of the form (iz_2, z_2, z_3) , or $z_2(i, 1, 0) + z_3(0, 0, 1)$, and a basis is $\{(i, 1, 0), (0, 0, 1)\}$.

Notice that this makes sense: Both these vectors are orthogonal to (1, i, 0), and they span a 2-dimensional subspace. Because \mathbb{C}^3 is 3-dimensional and W is 1-dimensional, we know W^{\perp} must be 2-dimensional.

2. Suppose $\beta = \{v_1, v_2, v_3\}$ is an orthonormal basis for \mathbb{R}^3 , and $v_1 = (\frac{3}{13}, \frac{4}{13}, \frac{12}{13})$. If the coordinates of (1, 1, 1) in basis β are $[(1, 1, 1)]_{\beta} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, what is a?

Since β is an orthonormal basis, we can always write $v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \langle v, v_3 \rangle v_3$. (Notice the order, $\langle v, v_i \rangle$. It matters if our field is \mathbb{C} .) Now v = (1, 1, 1), and $a = \langle v, v_1 \rangle = \langle (1, 1, 1), (\frac{3}{13}, \frac{4}{13}, \frac{12}{13}) \rangle = \frac{19}{13}$.

3. If $T : \mathbb{C}^2 \to \mathbb{C}^2$ is defined by $T(z_1, z_2) = (z_1 + iz_2, z_1 - iz_2)$, what is $T^*(z_1, z_2)$?

If
$$T = L_A$$
 then $T^* = L_{A^*}$.
 $A = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$ and so $A^* = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$. Therefore
 $T^*(z_1, z_2) = (z_1 + z_2, -iz_1 + iz_2)$.