1. A basis for the subspace $W \subseteq \mathbb{C}^{3}$ is $\beta=\{(1, i, 0)\}$. Find a basis for W^{\perp}.
$W^{\perp}=\{v \mid\langle v, w\rangle=0$ for all $w \in W\}$, but because W consists only of multiples of $(1, i, 0)$, we have $W^{\perp}=\{v \mid\langle v,(1, i, 0)\rangle=0\}$.
Using the definition of inner product in \mathbb{C}^{3}, we have $\left\langle\left(z_{1}, z_{2}, z_{3}\right),(1, i, 0)\right\rangle=z_{1}-i z_{2}$, so W^{\perp} consists of all solutions to the equation $z_{1}-i z_{2}=0$, which is equivalent to $z_{1}=i z_{2}$.
Hence W^{\perp} consists of all vectors of the form $\left(i z_{2}, z_{2}, z_{3}\right)$, or $z_{2}(i, 1,0)+z_{3}(0,0,1)$, and a basis is $\{(i, 1,0),(0,0,1)\}$.
Notice that this makes sense: Both these vectors are orthogonal to $(1, i, 0)$, and they span a 2-dimensional subspace. Because \mathbb{C}^{3} is 3-dimensional and W is 1-dimensional, we know W^{\perp} must be 2-dimensional.
2. Suppose $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}, and $v_{1}=\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$. If the coordinates of $(1,1,1)$ in basis β are $[(1,1,1)]_{\beta}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, what is a ?

Since β is an orthonormal basis, we can always write $v=\left\langle v, v_{1}\right\rangle v_{1}+\left\langle v, v_{2}\right\rangle v_{2}+\left\langle v, v_{3}\right\rangle v_{3}$. (Notice the order, $\left\langle v, v_{i}\right\rangle$. It matters if our field is \mathbb{C}.)
Now $v=(1,1,1)$, and $a=\left\langle v, v_{1}\right\rangle=\left\langle(1,1,1),\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)\right\rangle=\frac{19}{13}$.
3. If $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is defined by $T\left(z_{1}, z_{2}\right)=\left(z_{1}+i z_{2}, z_{1}-i z_{2}\right)$, what is $T^{*}\left(z_{1}, z_{2}\right)$?

If $T=L_{A}$ then $T^{*}=L_{A^{*}}$.
$A=\left(\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right)$ and so $A^{*}=\left(\begin{array}{cc}1 & 1 \\ -i & i\end{array}\right)$. Therefore
$T^{*}\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2},-i z_{1}+i z_{2}\right)$.

