Math 24
Winter 2010
Quiz 8

1. $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$, and the eigenvalues of A are 1 and 2 .
(a) The eigenspace of A corresponding to eigenvalue $\lambda=1$ consists of all solutions to the equation $B\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$ where B is the matrix:
$B=A-\lambda I=\left(\begin{array}{ccc}-1 & 1 & -1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$.
(b) If the reduced row echelon form of B is $\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, give a basis for the eigenspace of A corresponding to eigenvalue $\lambda=1$.

The matrix equation $B\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$ is equivalent to the matrix equation

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
$$

or to the single scalar equation $x_{1}-x_{2}+x_{3}=0$, or $x_{1}=x_{2}-x_{3}$. The complete solution to this is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2}-x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

and a basis for the eigenspace is

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} .
$$

2. An eigenvector for the eigenvalue $\lambda=2$ of the matrix A in problem (1) is $\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$.
(a) Give a matrix Q such that either $Q A Q^{-1}$ or $Q^{-1} A Q$ is a diagonal matrix D. (Be sure to say which of $Q A Q^{-1}$ or $Q^{-1} A Q$ is equal to D.)
$Q^{-1} A Q$ is diagonal, where Q is the change of coordinate matrix from a basis of eigenvectors to standard coordinates. The columns of Q are the elements of the basis of eigenvectors, so

$$
Q=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

(b) What is D ?
D is the matrix of L_{A} in the basis of eigenvectors, a diagonal matrix whose diagonal elements are the eigenvalues (in the same order as the corresponding eigenvectors appear as columns of Q):

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

3. Define:
(a) The vector space V is the direct sum of subspaces W_{1} and W_{2}.
V is the direct sum of W_{1} and W_{2} if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$.
(b) The linear operator $T: V \rightarrow V$ is diagonalizable.
T is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a digaonal matrix.
Note: This is the definition. A number of people wrote something like, "The characteristic polynomial of T factors, and the dimension of each eigenspace equals the multiplicity of the corresponding eigenvalue." There is a theorem saying that T is diagonalizable if and only if this is the case, so I gave full credit for that answer - but it is not, in fact, the definition of diagonalizable.
