1. (a) You can find a basis for the subspace of \mathbb{R}^{4} spanned by $\{(3,0,4,1),(1,3,2,1),(5,6,8,3),(1,0,5,1)\}$
if you know the reduced row echelon form of a certain matrix A.
i. What is A ?

$$
A=\left(\begin{array}{llll}
3 & 1 & 5 & 1 \\
0 & 3 & 6 & 0 \\
4 & 2 & 8 & 5 \\
1 & 1 & 3 & 1
\end{array}\right), \text { or any other matrix with these columns. }
$$

ii. If the reduced row echelon form of A is $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$, what is a basis for this subspace?
$\{(3,0,4,1),(1,3,2,1),(1,0,5,1)\}$, or any three columns of A that correspond to linearly independent columns of the reduced row echelon form.
(b) You can check whether the set $\{(1,2,3),(1,0,1),(2,2,1)\} \subseteq \mathbb{R}^{3}$ is linearly independent by finding the determinant of a certain matrix B.
i. What is B ?
$B=\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 1\end{array}\right)$, or any matrix with these three vectors as columns or as
rows.
ii. If the determinant of B is 6 , is the set linearly independent?

Yes, because $\operatorname{det}(B) \neq 0$ means that B is invertible, so B has rank 3 .
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is determined by its action on the vectors of the basis $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$, as follows: $T\left(v_{1}\right)=3 v_{1}, T\left(v_{2}\right)=v_{2}+v_{1}$, and $T\left(v_{3}\right)=v_{3}-v_{1}$.
(a) What is $[T]_{\beta}$?

The columns of $[T]_{\beta}$ are the β coordinates of $T\left(v_{1}\right), T\left(v_{2}\right)$, and $T\left(v_{3}\right)$.

$$
\begin{aligned}
& T\left(v_{1}\right)=3 v_{1}=3\left(v_{1}\right)+0\left(v_{2}\right)+0\left(v_{3}\right), \\
& T\left(v_{)}=v_{2}+v_{1}=1\left(v_{1}\right)+1\left(v_{2}\right)+0\left(v_{3}\right),\right. \\
& T\left(v_{1}\right)=v_{3}-v_{1}=(-1)\left(v_{1}\right)+0\left(v_{2}\right)+1\left(v_{3}\right), \text { so } \\
& {[T]_{\beta}=\left(\begin{array}{ccc}
3 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .}
\end{aligned}
$$

(b) If A is the matrix of T in the standard basis, what is $\operatorname{det}(A)$? How do you know? $\operatorname{det}(A)=3$.
A and B have the same determinant because they are similar matrices, and the determinant of B is the product of its diagonal entries, because B is upper triangular.
3. Find an eigenvalue, and the set of corresponding eigenvectors, of the matrix $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$. The eigenvalues of the matrix are the roots of its characteristic polynomial, which is $\operatorname{det}\left(\begin{array}{cc}1-t & 0 \\ 2 & 1-t\end{array}\right)=(1-t)^{2}$. There is only one root, $t=1$, so only one eigenvalue, $\lambda=1$.

To find eigenvectors of A corresponding to eigenvalue λ, solve the system $A v=\lambda v$, or $(A-\lambda I) v=0$. In this case we are solving

$$
\begin{aligned}
& \left(\begin{array}{cc}
1-1 & 0 \\
2 & 1-1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \text {, or } \\
& \left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \text {, whose solution set is }\left\{\left.s\binom{0}{1} \right\rvert\, s \in \mathbb{R}\right\} . \text { The set of }
\end{aligned}
$$ eigenvectors is $\left\{\left.s\binom{0}{1} \right\rvert\, s \in \mathbb{R} \& s \neq 0\right\}$.

