Math 24
Winter 2010
Quiz 6

1. Consider the following system of linear equations.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+4 x_{5}=8 \\
& 2 x_{1}+2 x_{2}+3 x_{3}+1 x_{4}+8 x_{5}=16 \\
& -2 x_{1}-2 x_{2}-4 x_{5}=-8 \\
& x_{1}+x_{2}+4 x_{3}+4 x_{4}+10 x_{5}=20
\end{aligned}
$$

The reduced row echelon form of the augmented matrix of the system is

$$
\left(\begin{array}{lllll|l}
1 & 1 & 0 & 0 & 2 & 4 \\
0 & 0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Give the complete solution of the system.

The reduced row echelon form gives us the equivalent system

$$
\begin{array}{lrr}
x_{1}+x_{2}+2 x_{5}=4 & x_{1}=-x_{2}-2 x_{5}+4 \\
x_{3}+x_{5}=2 & \text { or } & x_{3}=-x_{5}+2 \\
x_{4}+x_{5}=2 & & x_{4}=-x_{5}+2
\end{array}
$$

Therefore we have
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}-x_{2}-2 x_{5}+4 \\ x_{2} \\ -x_{5}+2 \\ -x_{5}+2 \\ x_{5}\end{array}\right)=x_{2}\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}-2 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right)+\left(\begin{array}{l}4 \\ 0 \\ 2 \\ 2 \\ 0\end{array}\right)$.
2. Let A be the coefficient matrix of the system of linear equations given in question (1).

That is, we have $A=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 4 \\ 2 & 2 & 3 & 1 & 8 \\ -2 & -2 & 0 & 0 & -4 \\ 1 & 1 & 4 & 4 & 10\end{array}\right)$. Specify:
(a) The null space of L_{A} is the solution space of the corresponding homogeneous system. This is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=x_{2}\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}-2 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right)$, as we can see from the solution
to the given system, which is the complete solution to the homogeneous system plus one particular solution to the given system. Therefore we have:
A basis for the null space of $L_{A}:\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right)\right\}$.
(b) Elementary row operations do not change linear dependencies among columns. Because columns 1, 3, and 4 form a basis for the space spanned by the columns of the reduced row echelon form of A, the same is true for A. Therefore we have: A basis for the range of $L_{A}:\left\{\left(\begin{array}{c}1 \\ 2 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 4\end{array}\right)\right\}$.
(c) The rank of $A: 3$.
3. Use elementary row operations to transform the matrix $A=\left(\begin{array}{ccc}0 & 3 & -1 \\ 2 & 2 & 1 \\ 4 & 1 & 5\end{array}\right)$ into upper triangular form. Find the determinant of A.

In order, interchange rows 1 and 2 , add (-2) times row 1 to row 3 , add (1) times row 2 to row 3. The steps of this transformation are:

$$
\left(\begin{array}{ccc}
0 & 3 & -1 \\
2 & 2 & 1 \\
4 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & 1 \\
0 & 3 & -1 \\
4 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & 1 \\
0 & 3 & -1 \\
0 & -3 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & 1 \\
0 & 3 & -1 \\
0 & 0 & 2
\end{array}\right) .
$$

The determinant of this upper triangular matrix is the product of its diagonal entries, or 12 . Since we performed one interchange of rows, which changes the sign of the determinant, we see

$$
\operatorname{det}(A)=-12
$$

We can check this by computing $\operatorname{det}(A)$ by cofactor expansion.

