Math 24
Winter 2010
Quiz 4 Sample Solutions

1. This problem is about linear functions from \mathbb{R}^{3} to \mathbb{R}^{3}.
(a) If $T(x, y, z)=(x-y, y+z, 2 z-x)$, what is the matrix representing T in the standard ordered basis?
$T(1,0,0)=(1,0,-1), T(0,1,0)=(-1,1,0)$, and $T(0,0,1)=(0,1,2)$, so the matrix is

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 2
\end{array}\right)
$$

(b) If $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)$, what is $L_{A}(x, y, z)$?

$$
L_{A}(x, y, z)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=(x+2 y, x+y+2 z, y+z)
$$

2. TRUE or FALSE?

(a) The vector spaces $M_{2 \times 2}(F)$ and $P_{3}(F)$ are isomorphic.

TRUE. Vector spaces of the same dimension over the same field are isomorphic.
(b) If V is an n-dimensional vector space, α and β are two different ordered bases for V, and $T: V \rightarrow V$ is linear, then $[T]_{\beta}^{\alpha}[T]_{\alpha}^{\beta}$ is the identity matrix.
FALSE. $[T]_{\beta}^{\alpha}[T]_{\alpha}^{\beta}=\left[T^{2}\right]_{\alpha}$. This is the identity matrix only if T^{2} is the identity transformation.
(c) If $T: V \rightarrow W$ is linear, $\operatorname{dim}(V)=n$, and $\operatorname{dim}(W)=n$, then T is an isomorphism if and only if $\operatorname{rank}(T)=n$.
TRUE. If linear transformation between n-dimensional vector spaces is onto, then it is an isomorphism.
(d) There are linear transformations $U: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ and $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ such that $U T$ is the identity transformation on its domain.
FALSE. The range of U can have dimension at most 2 (since the domain of U has dimension 2), so the range of the composition $U T$ cannot have dimension 3.
(e) There are linear transformations $U: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ and $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ such that $T U$ is the identity transformation on its domain.
TRUE. For example, if $U(a+b x)=a+b x+0 x^{2}$ and $T\left(a+b x+c x^{2}\right)=a+b x$, then $T U(a+b x)=U\left(a+b x+0 x^{2}\right)=a+b x$
3. Let $\alpha=\left\{1, x, x^{2}\right\}$ be an ordered basis for $P_{2}(\mathbb{R})$, and $\beta=\{(1,0,0),(1,1,0,(1,1,1)\}$ be an ordered basis for \mathbb{R}^{3}. Suppose $U: \mathbb{R}^{3} \rightarrow P_{2}(\mathbb{R})$ is a linear transformation defined by $U(a, b, c)=a+b+c x^{2}$ and $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ is a linear transformation, with $[T]_{\alpha}^{\beta}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$.
(a) What is $[U]_{\beta}^{\alpha}$?

The columns are the α-coordinates of $U(1,0,0), U(1,1,0)$, and $U(1,1,1)$.

$$
U(1,0,0)=1, U(1,1,0)=2, \text { and } U(1,1,1)=2+x^{2}, \text { so }
$$

$$
[U]_{\beta}^{\alpha}=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) What is $[U T]_{\alpha}$?

$$
[U T]_{\alpha}=[U T]_{\alpha}^{\alpha}=[U]_{\beta}^{\alpha}[T]_{\alpha}^{\beta}=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
3 & 3 & 4 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(c) What is $T\left(3 x^{2}+2 x+1\right)$?

$$
\begin{gathered}
{\left[T\left(3 x^{2}+2 x+1\right)\right]_{\beta}=[T]_{\alpha}^{\beta}\left[3 x^{2}+2 x+1\right]_{\alpha}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right), \text { so }} \\
T\left(3 x^{2}+2 x+1\right)=3(1,0,0)+5(1,1,0)+4(1,1,1)=(12,9,4)
\end{gathered}
$$

