Winter 2010
Quiz 3 Sample Solutions

1. A linear function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y)=(x-y, y-z, z-x)$.
(a) Find a basis for $N(T)$.

$$
\{(1,1,1)\} .
$$

(Solving $T(x, y, z)=(0,0,0)$ yields the solution $x=y=z$. Thus $N(T)$ is the line $x=y=z$, which is one-dimensional, so any nonzero vector on the line forms a basis.)
(b) Find a generating set for $R(T)$.

$$
\{(1,0,-1),(-1,1,0),(0,-1,1)\}
$$

(Since the vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$ span the domain of T, their images generate the range.)
(c) Find a basis for $R(T)$.

$$
\{(1,0,-1),(-1,1,0)\} .
$$

(Since the domain of T has dimension 3 and $N(T)$ has dimension 1, the dimension theorem tells us $R(T)$ has dimension 2 . This means any two linearly independent vectors in $R(T)$ form a basis.)
2. Complete the definitions:
(a) A nonempty subset S of a vector space V is linearly dependent if:
...there is a nontrivial linear combination of vectors in S that equals 0 .
(b) A subset S of the vector space is a basis for V if:
$\ldots S$ is linearly independent and spans (or generates) V.
(c) A vector space V has dimension equal to n if:
$\ldots V$ has a basis containing (exactly) n elements.

3. TRUE or FALSE?

(a) If $X=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a linearly independent subset of $M_{2 \times 2}(F)$, then X must generate $M_{2 \times 2}(F)$.
TRUE. ($M_{2 \times 2}(F)$ has dimension 4 , so any set of 4 linearly independent vectors is a basis.)
(b) If L is any linearly independent subset of a finite-dimensional vector space V, then there is a basis for V that contains L.
TRUE. (This is a theorem, or more properly a corollary to the replacement theorem.)
(c) $T(f)=\int_{0}^{1} f(x) d x$ is a linear transformation from $P(\mathbb{R})$ to \mathbb{R}.

TRUE. (Integration preserves addition and scalar multiplication.)
(d) If $T: \mathbb{R}^{3} \rightarrow P_{2}(\mathbb{R})$ is linear and onto, then it must be the case that $N(T)=\{0\}$. TRUE. (Since the dimensions of $\operatorname{domain}(T)$ and $R(T)$ are both 3 , by the dimension theorem, $N(T)$ must have dimension 0 .)
(e) If $T: V \rightarrow W$ is a linear transformation, and w is any element of W, then $\{v \in V \mid T(v)=w\}$ is a subspace of V.
FALSE. (Since a subspace must always contain 0 , and $T\left(0_{V}\right)=0_{W}$, the set $\{v \in V \mid T(v)=w\}$ cannot be a subspace if $w \neq 0_{W}$.)

