Math 24
Winter 2010
Quiz 2 Sample Solutions

1. Determine whether the following subset of $P_{2}(\mathbb{Q})$ is linearly independent. (Show your work.)

$$
\left\{-2 x^{2}+x-1,2 x^{2}+2 x-4, x+1\right\}
$$

The set is linearly independent if and only if the only solution to
$a\left(-2 x^{2}+x-1\right)+b\left(2 x^{2}+2 x-4\right)+c(x+1)=0$
is $a=b=c=0$. Solving the equation by setting the coefficients all equal to zero, we get

$$
\begin{aligned}
& -2 a+2 b=0 \\
& a+2 b+c=0 \\
& -a-4 b+c=0
\end{aligned}
$$

and solving this (for which you should show your work) does indeed yield $a=b=c=0$ as the only solution.
2. A 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is skew symmetric if $b=-c$. Give a subset of $M_{2 \times 2}(\mathbb{R})$ that generates the subspace of skew symmetric 2×2 matrices.

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

The matrices in this set are all skew symmetric, and they span the entire subspace, as any skew symmetric matrix can be written

$$
\left(\begin{array}{cc}
a & -c \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(Also, the set is clearly linearly independent, so it is in fact a basis.)
3. Complete these statements correctly.
(a) A subset S of a vector space V is a basis for V if and only if $\ldots S$ is linearly independent and spans V.
or ... any vector in V can be written uniquely as a linear combination of vectors in S.
(b) If L is a linearly independent set of vectors and v is a vector, then $L \cup\{v\}$ is linearly independent if and only if
\ldots. either $v \notin \operatorname{span}(L)$ or $v \in L$. (This last possibility is a subtle point. If $v \in L$, then $L \cup\{v\}$ is just L, as we haven't added anything new, and L is linearly independent.)
(c) Any intersection of subspaces of a vector space V is also a subspace of V.
(d) The vector space $M_{2 \times 2}(F)$ can have subspaces of the following dimensions: $0,1,2,3$, and 4 .
(e) If $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right)$ and $S=\left\{\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right),\left(\begin{array}{cc}4 & -2 \\ -2 & 7\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\}$, we can see that A is not in the span of S because
\ldots the matrices in S are all symmetric, and therefore every matrix in their span is symmetric, but A is not symmetric. (You can also show this by solving an appropriate system of linear equations.)

