Winter 2010
Quiz 1 Sample Solutions

1. Give an equation (in any form you like) for the smallest subspace of \mathbb{R}^{3} containing the vectors $(1,1,0)$ and $(1,-1,0)$.

Solution 1: Use the method from Section 1.1 in the textbook to get a vector parametric equation:

$$
\vec{x}=s(1,1,0)+t(1,-1,0) .
$$

Solution 2: Recall that the subspaces of \mathbb{R}^{3} are the zero subspace, lines and planes through the origin, and all of \mathbb{R}^{3}. Since the given vectors do not lie on the same line through the origin, and are both in the $x y$-plane, the subspace they generate must be the $x y$-plane, which has scalar equation

$$
z=0
$$

2. Complete this statement. If W is a subset of a vector space V, in order to verify that W (with the same operations as V) is a subspace of V, it is enough to check that:

Solution:

(a) The zero vector is in W. (Or, W is not the empty set.)
(b) W is closed under addition.
(c) W is closed under multiplication by scalars.

Alternative, and equally acceptable, ways to say the same thing:
W contains the zero vector (or, W is not the empty set) and is closed under addition and multiplication by scalars.
(a) $\overrightarrow{0} \in W$ (or, $W \neq \emptyset$).
(b) If $x \in W$ and $y \in W$, then $x+y \in W$.
(c) If $x \in W$ and a is a scalar, then $a x \in W$.
(a) $\overrightarrow{0} \in W$ (or, $W \neq \emptyset)$.
(b) $(x \in W \& y \in W) \Longrightarrow x+y \in W$.
(c) $(x \in W \& a \in F) \Longrightarrow a x \in W$.
3. TRUE or FALSE? (You do not need to give reasons. If you do, you may in rare cases get limited partial credit for a wrong answer with a good reason.)
(a) If F is any field, and x, y, and z are elements of a vector space V over F, then it is always the case that

$$
x+z=y+z \quad \Longrightarrow \quad x=y .
$$

TRUE. (This is a theorem from the textbook, the cancellation law for vector addition.)
(b) If V is a vector space over the rational numbers \mathbb{Q}, then V (with the same addition and scalar multiplication) can also be thought of as a vector space over the real numbers \mathbb{R}.

FALSE. (An element of a vector space over \mathbb{Q} cannot necessarily be multiplied by a real number not in \mathbb{Q}. For example, a nonzero matrix with rational entries, multiplied by $\sqrt{2}$ in the usual way, will not yield a matrix with rational entries.)
(c) If V is a vector space over the real numbers \mathbb{R}, then V (with the same addition and scalar multiplication) can also be thought of as a vector space over the rational numbers \mathbb{Q}.

TRUE. (This is because $\mathbb{Q} \subseteq \mathbb{R}$.)
(d) If V is any vector space, the intersection of subspaces of V is always a subspace of V.

TRUE. (This is a theorem from the textbook.)
(e) The subset of $M_{2 \times 2}(\mathbb{R})$ consisting of matrices whose trace is 1 is a subspace of $M_{2 \times 2}(\mathbb{R})$. Recall that

$$
\operatorname{trace}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+d
$$

FALSE. (Every subspace must contain the zero vector, and the trace of the zero matrix is not 1.)

