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Sample Solutions to the Midterm

(1.) (a.) Find a basis {v1, v2} for the plane P in R3 with equation 3x+ 2y − z = 0.

We can take any two non-collinear vectors in the plane, for instance v1 = (1, 0, 3) and
v2 = (0, 1, 2).

(b.) You know from multivariable calculus that the vector v3 = (3, 2,−1) is perpendicular
to the plane P . Therefore β = {v1, v2, v3} is linearly independent, and forms an ordered basis
for R3.

Let T : R3 → R3 be the perpendicular projection onto the plane P . In other words, T (v)
is the perpendicular projection of v onto P .

What is [T ]β?

As v1 and v2 are in the plane, T (v1) = v1 and T (v2) = v2. As v3 is a vector perpendicular
to the plane, its projection is the origin, T (v3) = 0. Therefore

[T (v1)]β = [v1]β =

1
0
0

, [T (v2)]β = [v2]β =

0
1
0

, [T (v3)]β = [0]β =

0
0
0

,

[T ]β =

1 0 0
0 1 0
0 0 0

.

(c.) Let α be the standard ordered basis for R3. Find the change of coordinate matrices
Qβ
α that changes α coordinates into β coordinates, and Qα

β that changes β coordinates into
α coordinates.

Do not use matrix inversion (if you know how to invert matrices) to do this problem.
Find each matrix by explicitly computing the coordinates of the appropriate vectors in the
appropriate bases. If you wish, you can check your work by verifying that Qβ

αQ
α
β = I.

Qα
β =

1 0 3
0 1 2
3 2 −1

, the matrix whose columns are the α (standard) coordinates

of the vectors in β.
To find the β coordinates of the vectors in α (the standard basis vectors) we need to

solve the vector equations:
(1, 0, 0) = a(1, 0, 3) + b(0, 1, 2) + c(3, 2,−1)
(0, 1, 0) = a(1, 0, 3) + b(0, 1, 2) + c(3, 2,−1)
(0, 0, 1) = a(1, 0, 3) + b(0, 1, 2) + c(3, 2,−1)

When we do this, we get
(1, 0, 0) = 5

14
(1, 0, 3)− 6

14
(0, 1, 2) + 3

14
(3, 2,−1)

(0, 1, 0) = − 6
14

(1, 0, 3) + 10
14

(0, 1, 2) + 2
14

(3, 2,−1)
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(0, 0, 1) = 3
14

(1, 0, 3) + 2
14

(0, 1, 2)− 1
14

(3, 2,−1),
that is,

[(1, 0, 0)β =


5
14

− 6
14

3
14

 [(0, 1, 0)]β =


− 6

14

10
14

2
14

 [(0, 0, 1)]β =


3
14

2
14

− 1
14

.

Now, using these coordinates as the columns of Qβ
α, we have

Qβ
α =


5
14

− 6
14

3
14

− 6
14

10
14

2
14

3
14

2
14

− 1
14

.

(d.) Find the matrix of T in the standard basis, [T ]α.
If you want to use the result of part (b) but were not able to do part (b), you may pretend

[T ]β =

1 0 0
0 1 0
0 0 2

. This is not the correct answer to part (b).

[T ]α = [T ]αα = Qα
β [T ]ββQ

β
α =

1 0 3
0 1 2
3 2 −1

1 0 0
0 1 0
0 0 0




5
14

− 6
14

3
14

− 6
14

10
14

2
14

3
14

2
14

− 1
14

.

[T ]α =


5
14

− 6
14

3
14

− 6
14

10
14

2
14

3
14

2
14

13
14

.

(e.) Use your answers to find the perpendicular projection of (2, 1, 1) onto the plane P .
If you want to check your work here, note that this point should in fact be on the plane

P , and the line between it and (2, 1, 1) should be perpendicular to P . If you used the wrong
answer to part (b) supplied in part (d), the point you found will not be on P , but the line
between it and (2, 1, 1) will still be perpendicular to P .

[T (2, 1, 1)]α = [T ]α[(2, 1, 1)]α =


5
14

− 6
14

3
14

− 6
14

10
14

2
14

3
14

2
14

13
14


2

1
1

 =


1
2

0

3
2

.

T (2, 1, 1) =
(

1
2
, 0, 3

2

)
.
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(2.) Recall that if A is an n × m matrix, the linear transformation LA : Fm → F n is
defined by LA(v) = Av, and A is the matrix that represents LA in the standard ordered
bases for Fm and F n.

This means that the columns of A are LA(e1), LA(e2), . . . ,LA(em), written as column
vectors, where e1, e2, . . . em are the standard basis vectors for Fm.

(a.) Show that an n × n matrix is invertible if and only if its columns are linearly
independent.

By Corollary 2 on page 108, an n × n matrix A is invertible if and only if the linear
transformation LA : F n → F n is invertible.

By Theorem 2.5 on page 71, LA is invertible if and only if it is onto.
By Theorem 2.2 on page 68, the range of LA is spanned by LA(e1), LA(e2), . . . LA(en), so

LA is invertible if and only if the vectors LA(e1), LA(e2), . . . LA(en) span F n.
Since F n is an n-dimensional vector space, by Corollary 2 on pages 47-48 the n vectors

LA(e1), LA(e2), . . . LA(en) span F n if and only if they are linearly independent.
The vectors LA(e1), LA(e2), . . . LA(en) are the columns of A, hence they are linearly in-

dependent if and only if the columns of A are linearly independent.
Putting all this together, we see that an n × n matrix A is invertible if and only if its

columns are linearly independent.

(b.) Determine whether the matrix


1 1 1 −3
0 2 −2 0
2 1 −2 −1
−3 1 1 1

 is invertible. (Hint: Check the

sum of its columns.)

Because its columns sum to zero, they are not linearly independent, and therefore by
part (a) the matrix is not invertible.

(c.) Determine whether the linear transformation T : M2×2(R)→ P3(R) defined by

T

(
a b
c d

)
= (a+ b+ c− 3d) + (2b− 2c)x+ (2a+ b− 2c− d)x2 + (−3a+ b+ c+ d)x3

is invertible.

If β =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
is a basis forM2×2(R) and α = {1, x, x2, x3, }

is a basis for P3(R), then

[T ]αβ =


1 1 1 −3
0 2 −2 0
2 1 −2 −1
−3 1 1 1

. By part (b) this matrix is not invertible, and there-

fore by Theorem 2.18 on page 101, T is not invertible.
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(3.) (a.) Find a basis for the subspace W of R4 consisting of all solutions to the following
system of equations.

w + x+ 2y + 3z = 0
2w + 2x− 4y − 2z = 0
y + z = 0
−w − x+ y = 0.

By subtracting multiples of equations 1 and 2 from equations 3 and 4 we can convert this
to the equivalent system

w + x+ z = 0
y + z = 0,

which can be rewritten as
w = −x− z
y = −z.
This system is satisfied by any vector of the form
w
x
y
z

 =


−x− z
x
−z
z

 = x


−1
1
0
0

+ z


−1
0
−1
1

,

which shows the solution set is spanned by the set



−1
1
0
0

 ,


−1
0
−1
1


.

Since this set is clearly linearly independent, it forms a basis for the solution set.

(b.) Find a basis for the subspace Z of R4 spanned by the vectors (1, 1, 2, 3), (2, 2,−4,−2),
(0, 0, 1, 1), and (−1,−1, 1, 0).

We know (Theorem 1.9 on page 44) that some subset of this set forms a basis. Using
our algorithm for finding a linearly independent set with the same span, we can begin with
the last two vectors, (0, 0, 1, 1), and (−1,−1, 1, 0). Since neither of these is a multiple of the
other, {(0, 0, 1, 1), (−1,−1, 1, 0)} is a linearly independent set.

Checking to see whether (2, 2,−4,−2) is in the span of {(0, 0, 1, 1), (−1,−1, 1, 0)}, we
see that (2, 2,−4, 2) = (−2)(0, 0, 1, 1) + (−2)(−1,−1, 1, 0), so (2, 2,−4,−2) is in the span of
{(0, 0, 1, 1), (−1,−1, 1, 0)}.

Now, checking to see whether (1, 1, 2, 3) is in the span of {(0, 0, 1, 1), (−1,−1, 1, 0)},
we see that (1, 1, 2, 3) = (3)(0, 0, 1, 1) + (−1)(−1,−1, 1, 0), so (1, 1, 2, 3) is in the span of
{(0, 0, 1, 1), (−1,−1, 1, 0)}.

Therefore {(0, 0, 1, 1), (−1,−1, 1, 0)} is a basis for the span of these four vectors.

(c.) Let v be any vector in R4. Show that v is in W if and only if v · z = 0 for every
element of Z (where v · z denotes the familiar dot product).

Let S = {(1, 1, 2, 3), (2, 2,−4,−2), (0, 0, 1, 1), (−1,−1, 1, 0)}.
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First, by the definition of W , we see that v = (w, x, y, z) is in W if and only if v satisfies
the equations of the system in part (a), which can be rewritten as

(1, 1, 2, 3) · (w, x, y, z) = 0
(2, 2,−4,−2) · (w, x, y, z) = 0
(0, 0, 1, 1) · (w, x, y, z) = 0
(−1,−1, 1, 0) · (w, x, y, z) = 0.

So v is in W if and only if s · v = 0 for every s ∈ S. Since the dot product is commutative,
we can write this as v · s = 0 for every s ∈ S.

Now, by definition, Z = span(S). So we must show that the following two things are
equivalent:

(a.) For every s ∈ S, we have v · s = 0.
(b.) For every z ∈ span(S), we have v · z = 0.

We will do this for any set S ⊂ Rn.
First, it is clear that (b) =⇒ (a), since if s ∈ S then s ∈ span(S), so by (b) we have

v · s = 0.
To show that (a) =⇒ (b), assume that (b) holds, and let z ∈ span(S). We must show

v · z = 0. By the definition of span, we can write z = r1s1 + r2s2 + · · ·+ rnsn for some scalars
r1, r2, . . . , rn and elements s1, s2, . . . , sn of S. Now by properties of the dot product, we have

v · z = v · (r1s1 + r2s2 + · · ·+ rnsn) = r1(v · s1) + r2(v · s2) + · · ·+ rn(v · sn).
By (b) we have v · si = 0 for i = 1, 2, . . . , n, and so we can conclude v · z = 0.

(d.) Let A be the matrix


1 1 2 3
2 2 −4 −2
0 0 1 1
−1 −1 1 0

, and At be the transpose of A. Then LA

and LAt are linear transformations from R4 to R4. Two pairs of the spaces W , Z, N(LA),
R(LA), N(LAt), and R(LAt) are equal. Which ones?

N(LA) = W
R(LAt) = Z.

To see the first equality, note that N(LA) consists of all solutions to the matrix equation
Ax = 0, which is equivalent to the system of equations in part (a), and W also consists of
all solutions to that system.

To see the second, note that R(LAt) is the span of the columns of At, which are the rows
of A, and Z is also the span of the rows of A.

The interesting fact that comes out of this (which holds for any matrix A in Mm×n(R),
as you can see by looking at the proof in part(c)) is that R(LAt) consists of all vectors that
are perpendicular to every vector in N(LA).
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(4.) Suppose that T and U are linear transformations from R5 to R5, and rank(T ) =
rank(U) = 3.

(a.) What is the largest possible rank of the composition TU?

The largest possible rank is 3.

Show this rank is possible by giving an example.

Let T (x1, x2, x3, x4, x5) = (x1, x2, x3, 0, 0), and U(x1, x2, x3, x4, x5) = (x3, x2, x1, 0, 0).
Both U and T have rank 3 since their range is the three-dimensional subspace spanned
by (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), and (0, 0, 1, 0, 0).

Now TU(x1, x2, x3, x4, x5) = T (U(x1, x2, x3, x4, x5)) = T (x3, x2, x1, 0, 0) = (x3, x2, x1, 0, 0).
We see TU has rank 3 since its range is also the three-dimensional subspace spanned by
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), and (0, 0, 1, 0, 0).

Prove that no larger rank is possible.

The range of TU is contained in the range of T . (To see this: Suppose that v ∈ R(TU).
This means that, for some w, we have v = TU(w) = T (U(w)), which shows that v ∈ R(T ).)
Therefore the dimension of R(TU) is at most the dimension of R(T ). But now we have that

rank(TU) = dim(R(TU)) ≤ dim(R(T )) = rank(T ) = 3.

(b.) What is the smallest possible rank of the composition TU?

The smallest possible rank is 1.

Show this rank is possible by giving an example.

Let T (x1, x2, x3, x4, x5) = (x3, x4, x5, 0, 0), and U(x1, x2, x3, x4, x5) = (x1, x2, x3, 0, 0).
Both U and T have rank 3 since their range is the three-dimensional subspace spanned
by (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), and (0, 0, 1, 0, 0).

Now TU(x1, x2, x3, x4, x5) = T (U(x1, x2, x3, x4, x5)) = T (x1, x2, x3, 0, 0) = (x3, 0, 0, 0, 0).
We see TU has rank 1 since its range is the one-dimensional subspace spanned by (1, 0, 0, 0, 0).

Prove that no smaller rank is possible.

We need to show that rank(TU) 6= 0. We will suppose that rank(TU) = 0 and get a
contradiction.

Because rank(TU) = 0, we have R(TU) = {0}, so for every vector v ∈ V , we have
TU(v) = 0, or T (U(v)) = 0.

This means that for every vector w = U(v) in R(U), we have T (w) = T (U(v)) = 0.
This shows that R(U) ⊆ N(T ). But we know that dim(R(U)) = rank(U) = 3, and by the
Dimension Theorem,

dim(N(T )) = nullity(T ) = dim(domain(T ))− rank(T ) = 5− 3 = 2.

Now we have a three-dimensional subspace (R(U)) contained in a two-dimensional subspace
(N(T )).

This is impossible, so we have a contradiction.
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(5.) Suppose that W and Z are subspaces of a vector space V , that W ∩ Z = {0}, and
that span(W ∪ Z) = V .

Show that if X is a basis for W and Y is a basis for Z, then X ∪ Y is a basis for V .

To show X ∪ Y is a basis, we need to show that it is linearly independent and spans V .

First we show that X ∪ Y is linearly independent. To do this, we need to show that no
nontrivial linear combination of vectors from X ∪ Y equals zero.

Suppose then that

(1) a1x1 + a2x2 + · · ·+ anxn + b1y1 + b2y2 + · · ·+ bmym = 0,

where xi ∈ X and yj ∈ Y . We must show that ai = 0 and bj = 0 for all i and j. We can
rewrite equation (1) as

(2) a1x1 + a2x2 + · · ·+ anxn = −(b1y1 + b2y2 + · · ·+ bmym).

Because the left hand side of equation (2) is a linear combination of vectors from X, which
is a basis for W , it must be in W ; that is,

a1x1 + a2x2 + · · ·+ anxn ∈ W.

Similarly, the right hand side of equation (2) is a linear combination of vectors from Y , which
is a basis for Z, so

−(b1y1 + b2y2 + · · ·+ bmym) ∈ Z.

We are given that W ∩ Z = {0}, so 0 is the only vector that is in both W and Z. This
means we have

a1x1 + a2x2 + · · ·+ anxn = −(b1y1 + b2y2 + · · ·+ bmym) = 0.

But now we have
a1x1 + a2x2 + · · ·+ anxn = 0,

and since the xi come from the linearly independent set X, we have ai = 0 for all i. Similarly,
since

b1y1 + b2y2 + · · ·+ bmym = 0

and the yj come from the linearly independent set Y , we have bj = 0 for all j.

Now we show that X ∪ Y spans V . To do this, we must show that any vector in V can
be expressed as a linear combination of vectors from X ∪ Y .

Let v be any vector of V . Because v is in the span of W ∪ Z, we can write

(3) v = a1w1 + a2w2 + · · ·+ anwn + b1z1 + b2z2 + · · ·+ bmzm = 0,

where wi ∈ W and zj ∈ Z.
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Because W is a subspace,

a1w1 + a2w2 + · · ·+ anwn ∈ W,

and since any element of W can be expressed as a linear combination of elements of the basis
X, we can write

a1w1 + a2w2 + · · ·+ anwn = c1x1 + c2x2 + · · ·+ ckxk,

where xi ∈ X. Similarly, we can write

b1z1 + b2z2 + · · ·+ bmzm = d1y1 + dyz2 + · · ·+ d`y`,

where yj ∈ Y . Substituting back into equation (3), we get

v = c1x1 + c2x2 + · · ·+ ckxk + d1y1 + dyz2 + · · ·+ d`y`,

which expresses v as a linear combination of elements from X ∪ Y .

This completes the proof.
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Outline of an alternative proof for (2)(a):
Instead of using the proof given above, you can prove more directly that a square matrix

A is invertible if and only if its columns are independent.
First, show that an n × n matrix A is invertible if and only if there is a matrix B such

that AB = In. To do this, you can use the ideas in exercises 9 and 10a on page 107 of the
textbook. A way to do 9 is to relate the properties of A, B, and AB to properties of LA,
LB, and LAB.

Second, show that the ith column of AB is a linear combination of the columns of A, with
the coefficients given by the ith column of B. Therefore, there is a B such that AB = In if
and only if the columns of In (the standard basis vectors) are all in the span of the columns
of A.

Now the standard basis vectors are all in the span of the columns of A if and only if the
columns of A span F n, which, since there are n columns and F n has dimension n, is the case
if and only if the columns of A are linearly independent.

In problem (4) we can prove a more general fact: Let V , W , and Z be vector spaces
with dimensions m, n, and p respectively. If U : V → W and T : W → Z are linear
transformations with rank(U) = r and rank(T ) = s, then we have

rank(TU) ≤ r;
rank(TU) ≤ s;
rank(TU) ≥ 0;
rank(TU) ≥ (r + s)− n.

(Note, by the Dimension Theorem, we know that r ≤ m, r ≤ n, s ≤ n, and s ≤ p.)

To prove this, you can let T be the restriction of T with domain the subspace R(U) ⊆ W
and codomain the subspace R(T ) ⊆ Z. That is, the domain of T is R(U), and for any
w ∈ R(U), we have T (w) = T (w).

Now, you can prove that the range of TU is the range of T . Therefore the problem
becomes to find upper and lower bounds on the size of T .

By the Dimension Theorem,
rank(T ) ≤ dim(domain(T )) = dim(R(U)) = rank(U) = r;
rank(T ) ≤ dim(codomain(T )) = dim(R(T )) = rank(T ) = s.

You can also prove that the null space of T is N(T )∩R(U). In particular, N(T ) ⊆ N(T ),
so that nullity(T ) ≤ nullity(T ) and, again by the Dimension Theorem, we have

rank(T ) = dim(domain(T )) − nullity(T ) ≥ dim(domain(T )) − nullity(T ) =
dim(R(U))− (n− rank(T )) = (r)− (n− s) = (r + s)− n.

You can also give examples where the rank is as small and as large as these constraints
permit. If we let {v1, . . . , vm} be a basis for V , {w1, . . . , wn} be a basis for W , and {z1, . . . , zp}
be a basis for Z, and let T (vi) = wi for i ≤ r and T (vi) = 0 for i > r, we can obtain the
largest and smallest possible rank for TU by setting, respectively,

U(wi) = zi for i ≤ s and U(wi) = 0 for i > s
or

U(wi) = 0 for i ≤ n− s and U(wi) = zi−s for i > n− s.
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