Math 24
Winter 2010
Thursday, January 21
(1.) TRUE or FALSE? In these exercises, V and W are finite-dimensional vector spaces over a field F, and T is a function from V to W.
a. If T is linear, then T preserves sums and scalar products.
b. If $T(x+y)=T(x)+T(y)$, then T is linear.
c. T is one-to-one if and only if the only vector x such that $T(x)=0$ is $x=0$.
d. If T is linear, then $T\left(0_{V}\right)=0_{W}$.
e. If T is linear, then $\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(W)$.
f. If T is linear, then T carries linearly independent subsets of V onto linearly independent subsets of W.
g. If $T: V \rightarrow W$ and $U: V \rightarrow W$ are both linear and agree on a basis for V, then $T=U$.
h. Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.
i. Recall that we can consider \mathbb{R} to be a vector space over itself. Any function $T: \mathbb{R} \rightarrow \mathbb{R}$ of the form $T(x)=m x+b$, where m and b are constants in \mathbb{R}, is linear.
j. The words "range," "image," and "codomain" all mean the same thing.
k. If $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ is linear and $N(T)$ is the subspace of diagonal matrices in $M_{2 \times 2}(\mathbb{R})$, then T is not onto.
(2.) Explain why we know that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is not linear.
a. $T\left(a_{1}, a_{2}\right)=\left(1, a_{2}\right)$.
b. $T\left(a_{1}, a_{2}\right)=\left(a_{1},\left(a_{1}\right)^{2}\right)$.
c. $T\left(a_{1}, a_{2}\right)=\left(\sin \left(a_{1}\right), 0\right)$.
d. $T\left(a_{1}, a_{2}\right)=\left(\left|a_{1}\right|, a_{2}\right)$.
e. $T\left(a_{1}, a_{2}\right)=\left(a_{1}+1, a_{2}\right)$.
(3.) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(2 x-y, 2 y-z, 4 x-z)$.
a. Find a basis for $N(T)$.
b. Find a basis for $R(T)$.
c. Find the nullity and rank of T. Verify the dimension theorem (in the case of T).
d. Is T one-to-one? How can you tell from the nullity and/or rank of T ?
e. Is T onto? How can you tell from the nullity and/or rank of T ?

