Math 24
Winter 2010
Monday, January 11, 2010

(1.) TRUE or FALSE?

a. The zero vector is a linear combination of any nonempty set of vectors.
b. The span of \emptyset is \emptyset.
c. If S is a subset of a vector space V, then $\operatorname{span}(S)$ equals the intersection of all subspaces of V that contain S.
d. If S is a nonempty subset of a vector space V, then $\operatorname{span}(S)$ equals the set of all linear combinations of elements of S.
e. In solving a system of linear equations, it is permissible to multiply an equation by any constant.
f. In solving a system of linear equations, it is permissible to add any multiple of one equation to another.
g. Every system of n equations in fewer than n variables has a solution.
h. If X and Y are two subsets of a vector space V, then

$$
X \subseteq Y \Longrightarrow \operatorname{span}(X) \subseteq \operatorname{span}(Y)
$$

i. If X and Y are two subsets of a vector space V, then

$$
X \cap Y=\emptyset \Longrightarrow \operatorname{span}(X) \cap \operatorname{span}(Y)=\{0\}
$$

j. Every system of homogeneous linear equations has a solution. (A linear equation $a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}=b$ is homogeneous if and only if $b=0$.)
(2.) Determine whether $(1,2,3)$ is in the span of the set $\{(2,4,-1),(3,0,5)\}$ in \mathbb{R}^{3}.
(3.) The span of $\{(2,4,-1),(3,0,5)\}$ in \mathbb{R}^{3} is a plane. Find an equation for this plane in the form $a x+b y+c z=d$.

