Math 24
Winter 2010
Friday, January 8
Here is a sample answer to one of the problems we did in class:
(2.) Show the subset of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ consisting of all functions f such that, for every x, we have $f(x+2 \pi)=f(x)$, is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Proposition: The subset of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ consisting of all functions f such that, for every x, we have $f(x+2 \pi)=f(x)$, is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Proof: Call this subset W. We can write

$$
W=\{f \mid f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \text { and for all } x, f(x+2 \pi)=f(x)\}
$$

To show that W is a subspace, we must show that W contains the zero vector of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ and is closed under addition and multiplication by scalars.

The zero vector of $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is the constant function c_{0} whose value at every point is 0 . Now, for every x,

$$
c_{0}(x)=0 \text { and } c_{0}(x+2 \pi)=0, \text { and therefore } c_{0}(x)=c_{0}(x+2 \pi),
$$

which shows that $c_{0} \in W$.
Now, to show that W is closed under addition and scalar multiplication, suppose that f and g are in W. This means that for every x we have

$$
f(x+2 \pi)=f(x) \text { and } g(x+2 \pi)=g(x) .
$$

Therefore, using the definition of addition of functions, for every x we have

$$
(f+g)(x+2 \pi)=f(x+2 \pi)+g(x+2 \pi)=f(x)+g(x)=(f+g)(x)
$$

and therefore $f+g \in W$. This shows W is closed under addition. Similarly, letting a be any real number, and using the definition of multiplication of functions by scalars, for every x we have

$$
(a f)(x+2 \pi)=a(f(x+2 \pi))=a(f(x))=(a f)(x)
$$

and therefore $a f \in W$. This shows W is closed under scalar multiplication, and that completes the proof.

