Math 24
Winter 2010
Thursday, January 7
(1.) Which subsets of \mathbb{R}^{2} are vector spaces over \mathbb{R} ? Give a geometric description. (For example, the unit circle is not a vector space, because $(1,0)$ lies on the unit circle, but $2(1,0)$ does not. On the other hand, the x-axis is a vector space, because it is closed under addition and under multiplication by scalars.)
(2.) Which subsets of \mathbb{R}^{3} are vector spaces?
(There is one more problem on the back.)
(3.) A vector space over the real numbers is sometimes called a real vector space. The real vector spaces $\mathbb{R}^{2}, \mathbb{C}, P_{1}(\mathbb{R})$ (polynomials over \mathbb{R} of degree at most 1), and the space V of solutions to the differential equation $f^{\prime \prime}+f=0$ are very much alike:
$\mathbb{R}^{2}=\{a(1,0)+b(0,1) \mid a \in \mathbb{R} \& b \in \mathbb{R}\} ;$
$\mathbb{C}=\{a(1)+b(i) \mid a \in \mathbb{R} \& b \in \mathbb{R}\} ;$
$P_{1}(\mathbb{R})=\{a(1)+b(x) \mid a \in \mathbb{R} \& b \in \mathbb{R}\} ;$
$V=\{a \sin x+b \cos x \mid a \in \mathbb{R} \& b \in \mathbb{R}\} ;$
and in all cases, we add vectors, or multiply vectors by scalars, by adding, or multiplying, the numbers a and b. There is a sense in which these are the same vector space in different guises.

Describe the subsets of the vector spaces $\mathbb{C}, P_{1}(\mathbb{R})$, and V that are themselves vector spaces (with the same addition and scalar multiplication). (Use your answer to the first problem.)

