Math 24
Winter 2010
Friday, March 5
We saw in class that if $A x=b$ has no solution, we can find x such that $A x$ is as close as possible to b by choosing x so that

$$
A^{*} A x=A^{*} b .
$$

If $A^{*} A$ is invertible, we can rewrite this as

$$
x=\left(A^{*} A\right)^{-1} A^{*} b .
$$

This connects to the least squares method of fitting a line to data in the following way: Suppose we have data points $\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots,\left(t_{n}, y_{n}\right)$ we want to fit a line to. If the line is given by $y=c t+d$, the y-coordinates of the points on the line with t-coordinates $t_{1}, t_{2}, \ldots, t_{n}$ are given by $c t_{1}+d, c t_{2}+d, \ldots, c t_{n}+d$. We would like the n-tuple of these y-coordinates, $\left(c t_{1}+d, c t_{2}+d, \ldots, c t_{n}+d\right)$, to be as close as possible to the n-tuple of actual y-coordinates of our data points, $b=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

The function $T(c, d)=\left(c t_{1}+d, c t_{2}+d, \ldots, c t_{n}+d\right)$ is linear, and its matrix in the standard bases for \mathbb{R}^{2} and \mathbb{R}^{n} is

$$
A=\left(\begin{array}{cc}
t_{1} & 1 \\
t_{2} & 1 \\
\vdots & \vdots \\
t_{n} & 1
\end{array}\right)
$$

Hence we are looking for an approximate solution $x=\binom{c}{d}$ to $A x=b$, which we find by setting

$$
\binom{c}{d}=x=\left(A^{*} A\right)^{-1} A^{*} b=\left(\left(\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
1 & 1 & \cdots & 1
\end{array}\right)\left(\begin{array}{cc}
t_{1} & 1 \\
t_{2} & 1 \\
\vdots & \vdots \\
t_{n} & 1
\end{array}\right)\right)^{-1}\left(\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
1 & 1 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

This is why the method in the example on page 363 works.

