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For this problem, V = Rn, and W is an m-dimensional subset of V . We define

W⊥ = {v | w · v = 0 for all w ∈ W},

where · denotes the familiar dot product.
For example, if n = 3 and m = 2, then the subspace W is a plane through the origin,

and W⊥ is the line through the origin perpendicular to that plane. If n = 3 and m = 1,
then the subspace W is a line through the origin, and W⊥ is the plane through the origin
perpendicular to that line.

(1.) Show that W⊥ is a subspace of V .

We must show that 0 ∈ W⊥ and that W⊥ is closed under addition and multiplication by
scalars. To do this, we recall from multivariable calculus that if w is any fixed element of
Rn, then for any v1 and v2 in Rn and any real number r, we have the following properties.

w ·~0 = 0;

w · (v1 + v2) = w · v1 + w · v2;

w · rv1 = r(w · v1).

To show 0 ∈ W⊥, suppose w ∈ W . Then w · 0 = 0 by the first property. This shows
0 ∈ W⊥.

To show W⊥ is closed under addition, suppose v1 ∈ W⊥ and v2 ∈ W⊥. Then we must
show that v1 + vw ∈ W⊥. That is, we must show that w · (v1 + v2) = 0 for all w ∈ W .

To do this, suppose w ∈ W . By the second property, w · (v1 + v2) = w · v1 + w · v2.
Since v1 and vw are in W⊥, we have w · v1 = 0 and w · v2 = 0. Therefore, w · (v1 + v2) =
w · v1 + w · v2 = 0 + 0 = 0, which is what we needed to show.

The proof that W⊥ is closed under multiplication by scalars is similar, using the third
property.

(2.) Suppose that β = {w1, w2, . . . , wm} is a basis for W . Show that for any v ∈ V we
have

v ∈ W⊥ ⇐⇒ wi · v = 0 for i = 1, 2, . . . ,m.

The =⇒ direction is immediate, because if w ·v = 0 for every w ∈ W , then surely w ·v = 0
if w is one of the basis vectors of β.

To show the⇐= direction, suppose that wi · v = 0 for i = 1, 2, . . . ,m and choose w ∈ W .
We must show w · v = 0.
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Because β is a basis, we can write w = a1w1 + a2w2 + · · · + amwm. Now, repeatedly
applying the second and third properties above, we have

w · v = (a1w1 + a2w2 + · · ·+ amwm) · v = a1(w1 · v) + a2(w2 · v) + · · ·+ am(wm · v) =

a1(0) + a2(0) + · · ·+ am(0) = 0.

(3.) Show that the dimension of W⊥ is n−m.

If we write the vectors w1, w2, . . . , wm as row vectors, and let A be the m × n matrix
with those vectors as rows, we have

Av =


w1 · v
w2 · v

...
wm · v

 .

Now by problem (2), we have v ∈ W⊥ if and only if Av = 0, so W⊥ is the null space of
LA.

Because the rows of A are linearly independent (they are elements of a basis for W ), the
rank of A is m. The rank of A is the dimension of R(LA). Since the domain of LA is Rn, by
the Dimension Theorem, the null space of LA has dimension n−m. So dim(W⊥) = n−m.

(4.) Show that V = W ⊕W⊥.

First we show W ∩W⊥ = {0}. Suppose w ∈ W and w ∈ W⊥; we must show w = 0.
Because w ∈ W⊥, the dot product of w with any element of W is 0. But w itself is an
element of W , so w · w = 0. This means w = 0.

The sum W + W⊥ is some subspace of Rn; we’ll call it Z. Because W ∩W⊥ = {0}, we
have Z = W ⊕W⊥. By one of the characterizations of direct sum, the union of a basis for
W (which has m elements) and a basis for W⊥ (which has n−m elements) is a basis for Z.

But now the dimension of Z is m+ (n−m) = n, and so Z must be all of Rn. Hence

V = Rn = Z = W ⊕W⊥.
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