Math 24 Winter 2010 Friday, February 26

For this problem, $V = \mathbb{R}^n$, and W is an m-dimensional subset of V. We define

$$W^{\perp} = \{ v \mid w \cdot v = 0 \text{ for all } w \in W \},\$$

where \cdot denotes the familiar dot product.

For example, if n = 3 and m = 2, then the subspace W is a plane through the origin, and W^{\perp} is the line through the origin perpendicular to that plane. If n = 3 and m = 1, then the subspace W is a line through the origin, and W^{\perp} is the plane through the origin perpendicular to that line.

(1.) Show that W^{\perp} is a subspace of V.

We must show that $0 \in W^{\perp}$ and that W^{\perp} is closed under addition and multiplication by scalars. To do this, we recall from multivariable calculus that if w is any fixed element of \mathbb{R}^n , then for any v_1 and v_2 in \mathbb{R}^n and any real number r, we have the following properties.

$$w \cdot \vec{0} = 0;$$

$$w \cdot (v_1 + v_2) = w \cdot v_1 + w \cdot v_2;$$

$$w \cdot rv_1 = r(w \cdot v_1).$$

To show $0 \in W^{\perp}$, suppose $w \in W$. Then $w \cdot 0 = 0$ by the first property. This shows $0 \in W^{\perp}$.

To show W^{\perp} is closed under addition, suppose $v_1 \in W^{\perp}$ and $v_2 \in W^{\perp}$. Then we must show that $v_1 + v_w \in W^{\perp}$. That is, we must show that $w \cdot (v_1 + v_2) = 0$ for all $w \in W$.

To do this, suppose $w \in W$. By the second property, $w \cdot (v_1 + v_2) = w \cdot v_1 + w \cdot v_2$. Since v_1 and v_w are in W^{\perp} , we have $w \cdot v_1 = 0$ and $w \cdot v_2 = 0$. Therefore, $w \cdot (v_1 + v_2) = w \cdot v_1 + w \cdot v_2 = 0 + 0 = 0$, which is what we needed to show.

The proof that W^{\perp} is closed under multiplication by scalars is similar, using the third property.

(2.) Suppose that $\beta = \{w_1, w_2, \dots, w_m\}$ is a basis for W. Show that for any $v \in V$ we have

$$v \in W^{\perp} \iff w_i \cdot v = 0 \text{ for } i = 1, 2, \dots, m.$$

The \implies direction is immediate, because if $w \cdot v = 0$ for every $w \in W$, then surely $w \cdot v = 0$ if w is one of the basis vectors of β .

To show the \Leftarrow direction, suppose that $w_i \cdot v = 0$ for i = 1, 2, ..., m and choose $w \in W$. We must show $w \cdot v = 0$. Because β is a basis, we can write $w = a_1w_1 + a_2w_2 + \cdots + a_mw_m$. Now, repeatedly applying the second and third properties above, we have

$$w \cdot v = (a_1w_1 + a_2w_2 + \dots + a_mw_m) \cdot v = a_1(w_1 \cdot v) + a_2(w_2 \cdot v) + \dots + a_m(w_m \cdot v) = a_1(0) + a_2(0) + \dots + a_m(0) = 0.$$

(3.) Show that the dimension of W^{\perp} is n - m.

If we write the vectors w_1, w_2, \ldots, w_m as row vectors, and let A be the $m \times n$ matrix with those vectors as rows, we have

$$Av = \begin{pmatrix} w_1 \cdot v \\ w_2 \cdot v \\ \vdots \\ w_m \cdot v \end{pmatrix}.$$

Now by problem (2), we have $v \in W^{\perp}$ if and only if Av = 0, so W^{\perp} is the null space of L_A .

Because the rows of A are linearly independent (they are elements of a basis for W), the rank of A is m. The rank of A is the dimension of $R(L_A)$. Since the domain of L_A is \mathbb{R}^n , by the Dimension Theorem, the null space of L_A has dimension n-m. So $dim(W^{\perp}) = n-m$.

(4.) Show that $V = W \oplus W^{\perp}$.

First we show $W \cap W^{\perp} = \{0\}$. Suppose $w \in W$ and $w \in W^{\perp}$; we must show w = 0. Because $w \in W^{\perp}$, the dot product of w with any element of W is 0. But w itself is an element of W, so $w \cdot w = 0$. This means w = 0.

The sum $W + W^{\perp}$ is some subspace of \mathbb{R}^n ; we'll call it Z. Because $W \cap W^{\perp} = \{0\}$, we have $Z = W \oplus W^{\perp}$. By one of the characterizations of direct sum, the union of a basis for W (which has m elements) and a basis for W^{\perp} (which has n - m elements) is a basis for Z.

But now the dimension of Z is m + (n - m) = n, and so Z must be all of \mathbb{R}^n . Hence

$$V = \mathbb{R}^n = Z = W \oplus W^{\perp}.$$