Math 24
Winter 2010
Friday, February 26
For this problem, $V=\mathbb{R}^{n}$, and W is an m-dimensional subset of V. We define

$$
W^{\perp}=\{v \mid w \cdot v=0 \text { for all } w \in W\}
$$

where - denotes the familiar dot product.
For example, if $n=3$ and $m=2$, then the subspace W is a plane through the origin, and W^{\perp} is the line through the origin perpendicular to that plane. If $n=3$ and $m=1$, then the subspace W is a line through the origin, and W^{\perp} is the plane through the origin perpendicular to that line.
(1.) Show that W^{\perp} is a subspace of V.

We must show that $0 \in W^{\perp}$ and that W^{\perp} is closed under addition and multiplication by scalars. To do this, we recall from multivariable calculus that if w is any fixed element of \mathbb{R}^{n}, then for any v_{1} and v_{2} in \mathbb{R}^{n} and any real number r, we have the following properties.

$$
\begin{aligned}
& w \cdot \overrightarrow{0}=0 ; \\
& w \cdot\left(v_{1}+v_{2}\right)=w \cdot v_{1}+w \cdot v_{2} ; \\
& w \cdot r v_{1}=r\left(w \cdot v_{1}\right) .
\end{aligned}
$$

To show $0 \in W^{\perp}$, suppose $w \in W$. Then $w \cdot 0=0$ by the first property. This shows $0 \in W^{\perp}$.

To show W^{\perp} is closed under addition, suppose $v_{1} \in W^{\perp}$ and $v_{2} \in W^{\perp}$. Then we must show that $v_{1}+v_{w} \in W^{\perp}$. That is, we must show that $w \cdot\left(v_{1}+v_{2}\right)=0$ for all $w \in W$.

To do this, suppose $w \in W$. By the second property, $w \cdot\left(v_{1}+v_{2}\right)=w \cdot v_{1}+w \cdot v_{2}$. Since v_{1} and v_{w} are in W^{\perp}, we have $w \cdot v_{1}=0$ and $w \cdot v_{2}=0$. Therefore, $w \cdot\left(v_{1}+v_{2}\right)=$ $w \cdot v_{1}+w \cdot v_{2}=0+0=0$, which is what we needed to show.

The proof that W^{\perp} is closed under multiplication by scalars is similar, using the third property.
(2.) Suppose that $\beta=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ is a basis for W. Show that for any $v \in V$ we have

$$
v \in W^{\perp} \Longleftrightarrow w_{i} \cdot v=0 \text { for } i=1,2, \ldots, m
$$

The \Longrightarrow direction is immediate, because if $w \cdot v=0$ for every $w \in W$, then surely $w \cdot v=0$ if w is one of the basis vectors of β.

To show the \Longleftarrow direction, suppose that $w_{i} \cdot v=0$ for $i=1,2, \ldots, m$ and choose $w \in W$. We must show $w \cdot v=0$.

Because β is a basis, we can write $w=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{m} w_{m}$. Now, repeatedly applying the second and third properties above, we have

$$
\begin{gathered}
w \cdot v=\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{m} w_{m}\right) \cdot v=a_{1}\left(w_{1} \cdot v\right)+a_{2}\left(w_{2} \cdot v\right)+\cdots+a_{m}\left(w_{m} \cdot v\right)= \\
a_{1}(0)+a_{2}(0)+\cdots+a_{m}(0)=0 .
\end{gathered}
$$

(3.) Show that the dimension of W^{\perp} is $n-m$.

If we write the vectors $w_{1}, w_{2}, \ldots, w_{m}$ as row vectors, and let A be the $m \times n$ matrix with those vectors as rows, we have

$$
A v=\left(\begin{array}{c}
w_{1} \cdot v \\
w_{2} \cdot v \\
\vdots \\
w_{m} \cdot v
\end{array}\right)
$$

Now by problem (2), we have $v \in W^{\perp}$ if and only if $A v=0$, so W^{\perp} is the null space of L_{A}.

Because the rows of A are linearly independent (they are elements of a basis for W), the rank of A is m. The rank of A is the dimension of $R\left(L_{A}\right)$. Since the domain of L_{A} is \mathbb{R}^{n}, by the Dimension Theorem, the null space of L_{A} has dimension $n-m$. So $\operatorname{dim}\left(W^{\perp}\right)=n-m$.
(4.) Show that $V=W \oplus W^{\perp}$.

First we show $W \cap W^{\perp}=\{0\}$. Suppose $w \in W$ and $w \in W^{\perp}$; we must show $w=0$. Because $w \in W^{\perp}$, the dot product of w with any element of W is 0 . But w itself is an element of W, so $w \cdot w=0$. This means $w=0$.

The sum $W+W^{\perp}$ is some subspace of \mathbb{R}^{n}; we'll call it Z. Because $W \cap W^{\perp}=\{0\}$, we have $Z=W \oplus W^{\perp}$. By one of the characterizations of direct sum, the union of a basis for W (which has m elements) and a basis for W^{\perp} (which has $n-m$ elements) is a basis for Z.

But now the dimension of Z is $m+(n-m)=n$, and so Z must be all of \mathbb{R}^{n}. Hence

$$
V=\mathbb{R}^{n}=Z=W \oplus W^{\perp}
$$

