Math 24 Winter 2010 Friday, February 26

For this problem, $V = \mathbb{R}^n$, and W is an *m*-dimensional subset of V. We define

$$W^{\perp} = \{ v \mid w \cdot v = 0 \text{ for all } w \in W \},\$$

where \cdot denotes the familiar dot product.

For example, if n = 3 and m = 2, then the subspace W is a plane through the origin, and W^{\perp} is the line through the origin perpendicular to that plane. If n = 3 and m = 1, then the subspace W is a line through the origin, and W^{\perp} is the plane through the origin perpendicular to that line.

(1.) Show that W^{\perp} is a subspace of V.

(2.) Suppose that $\beta = \{w_1, w_2, \dots, w_m\}$ is a basis for W. Show that for any $v \in V$ we have $v \in W^{\perp} \iff w_i \cdot v = 0$ for $i = 1, 2, \dots, m$. W^{\perp}

$$v \in W^{\perp} \iff w_i \cdot v = 0 \text{ for } i = 1, 2, \dots, m.$$

(3.) Show that the dimension of W^{\perp} is n - m.

(4.) Show that $V = W \oplus W^{\perp}$.