Math 24
Winter 2010
Friday, February 26
For this problem, $V=\mathbb{R}^{n}$, and W is an m-dimensional subset of V. We define

$$
W^{\perp}=\{v \mid w \cdot v=0 \text { for all } w \in W\}
$$

where - denotes the familiar dot product.
For example, if $n=3$ and $m=2$, then the subspace W is a plane through the origin, and W^{\perp} is the line through the origin perpendicular to that plane. If $n=3$ and $m=1$, then the subspace W is a line through the origin, and W^{\perp} is the plane through the origin perpendicular to that line.
(1.) Show that W^{\perp} is a subspace of V.
(2.) Suppose that $\beta=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ is a basis for W. Show that for any $v \in V$ we have

$$
v \in W^{\perp} \Longleftrightarrow w_{i} \cdot v=0 \text { for } i=1,2, \ldots, m
$$

(3.) Show that the dimension of W^{\perp} is $n-m$.
(4.) Show that $V=W \oplus W^{\perp}$.

