
Math 24
Winter 2010

Wednesday, February 24

(1.) TRUE or FALSE?

(a.) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.

FALSE. There are linear operators with no eigenvalues, and problem (1) from last time
gives another counterexample. However, there are at most n distinct eigenvalues.

(b.) If a real matrix has one eigenvector, then it has an infinite number of eigenvectors.

TRUE. Any nonzero scalar multiple of an eigenvector is also an eigenvector.

(c.) There exists a square matrix with no eigenvectors.

TRUE. The matrix of any rotation of R2 through an angle that is not an integer multiple
of π is an example.

(d.) Eigenvalues must be nonzero scalars.

FALSE. Zero can be an eigenvalue.

(e.) Any two eigenvectors are linearly independent.

FALSE. Any nonzero scalar multiple of an eigenvector is also an eigenvector. However,
two eigenvectors corresponding to different eigenvalues must be linearly independent.

(f.) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T .

FALSE. Problem (1) gives a counterexample.

(g.) Linear operators on infinite-dimensional vector spaces never have eigenvalues.

FALSE. The identity operator on any space has 1 as an eigenvalue (and all nonzero
vectors as eigenvectors). The textbook gives a more interesting example.

(h.) An n× n matrix A with entries from a field F is similar to a diagonal matrix if and
only if there is a basis for F n consisting of eigenvectors of A.

TRUE.

(i.) Similar matrices always have the same eigenvalues.

TRUE. This is because similar matrices represent the same linear transformation relative
to different bases.

(j.) Similar matrices always have the same eigenvectors.

FALSE. This is because the coordinates of an eigenvector for a linear transformation are
different in different bases.

(k.) The sum of two eigenvectors of an operator T is always an eigenvector of T .

FALSE. Again, consider problem (1). However, the sum of two eigenvectors correspond-
ing to the same eigenvalue is always either the zero vector or an eigenvector.
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(l.) Any linear operator on an n-dimensional vector space that has fewer than n distinct
eigenvalues is not diagonalizable.

FALSE. Problem (1) gives a counterexample.

(m.) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly
dependent.

FALSE. Problem (1) gives a counterexample.

(n.) If λ is an eigenvalue of a linear operator T , then each vector in Eλ is an eigenvector
of T .

FALSE. The exception is the zero vector

(o.) If λ1 and λ2 are distinct eigenvalues of a linear operator T , then Eλ1 ∩ Eλ2 = {0}.

TRUE.

(p.) Let A ∈ Mn×n(F ) and β = {v1, v2, . . . , vn} be an ordered basis for F n consisting of
eigenvectors of A. If Q is the n×n matrix whose jth column is vn (1 ≤ j ≤ n), then Q−1AQ
is a diagonal matrix.

TRUE. Q−1AQ is the matrix of LA in the basis β, which is a diagonal matrix.

(q.) A linear operator T on a finite-dimensional vector space is diagonalizable if and only
if the multiplicity of each eigenvalue λ equals the dimension of Eλ.

FALSE. It must also be the case that the characteristic polynomial of T splits.

(r.) Every diagonalizable linear operator on a nonzero vector space has at least one
eigenvalue.

TRUE. The vector space has a basis consisting of eigenvectors, each of which corresponds
to some eigenvalue.

(s.) You can always tell from the characteristic polynomial of A whether A is diagonal-
izable.

FALSE. Problems (1) and (3) from last time give an example of two matrices with the
same characteristic polynomial, only one of which is diagonalizable.

(t.) You can sometimes tell from the characteristic polynomial of A whether A is diago-
nalizable.

TRUE. If the characteristic polynomial does not split, A is not diagonalizable. If the
characteristic polynomial splits and each root has multiplicity 1, then A is diagonalizable.

(u.) You can always tell from the characteristic polynomial of A whether A is invertible.

TRUE. A is invertible if and only if the only solution to Av = 0 is v = 0, which happens
if and only if 0 is not an eigenvalue of A, which happens if and only if 0 is not a root of the
characteristic polynomial of A, which happens if and only if the characteristic polynomial of
A has a nonzero constant term.
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(2.) Find an invertible matrix Q and find a diagonalizable matrix B such that either
QAQ−1 = B or Q−1AQ = B. Be sure to say which of these two equations holds for your Q
and B.

A =

1 −7 2
0 2 0
0 −10 2

.

There was an error in this problem; this matrix actually is not diagonalizable. The

characteristic polynomial is det

1− t −7 2
0 2− t 0
0 −10 2− t

 = (1− t)(2− t)(2− t), which has two

roots, 1 (multiplicity 1) and 2 (multiplicity 2).
To find an eigenvector corresponding to λ = 1, solve the equation (A − I)v = 0, or0 −7 2

0 1 0
0 −10 1

 x1

x2

x3

 =

0
0
0

 to get

x1

x2

x3

 =

x1

0
0

, so an eigenvector is

1
0
0

.

To find an eigenvector corresponding to λ = 2, solve the equation (A − 2I)v = 0, or−1 −7 2
0 0 0
0 −10 0

 x1

x2

x3

 =

0
0
0

 to get

x1

x2

x3

 =

2x3

0
x3

, so an eigenvector is

2
0
1

. There

are not two linearly independent eigenvectors.
Since the eigenvalue 2 has multiplicity 2, and the corresponding eigenspace has dimension

1, A is not diagonalizable.

(3.) For the matrix A in problem (2), find a basis for the eigenspace of A corresponding
to each eigenvalue. Describe each of these eigenspaces geometrically. (Be specific. Don’t
just say “a line”; specify which line.)

The eigenspace corresponding to λ = 1 is the line through the origin in the direction of
the eigenvector (1, 0, 0), or the x-axis. It is described by the pair of equations y = 0 and
z = 0.

The eigenspace corresponding to λ = 2 is the line through the origin in the direction of
the eigenvector (2, 0, 1). It is described by the pair of equations y = 0 and x = 2z.

(4.) Test the matrix A for diagonalizability.

A =

1 1 2
0 1 1
0 0 2

.

The characteristic polynomial (1 − t)(1 − t)(2 − t) splits. The eigenvalues are 1, with
multiplicity 2, and 2, with multiplicity 1. A is diagonalizable, then, if and only if the
eigenspace corresponding to eigenvalue λ = 1 has dimension 2.
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To find out, solve the equation (A − I)v = 0, or

0 1 2
0 0 1
0 0 1

 x1

x2

x3

 =

0
0
0

 to getx1

x2

x3

 =

x1

0
0

. The eigenspace has dimension 1, so A is not diagonalizable.

(5.) Suppose a linear operator T on an n-dimensional vector space V has only one
eigenvalue λ = 1, and T is diagonalizable. What can you conclude about T?

What can you say in general about diagonalizable linear operators with a single eigen-
value?

Since T is diagonalizable, there is a basis β consisting of eigenvectors of T . Since the
only eigenvalue of T is 1, for each eigenvector v ∈ β, we must have T (v) = v. Since a linear
transformation is determined by its values on a basis, T must be the identity transformation.

If the only eigenvalue of T is λ, the same argument applies, except now T (v) = λv for
every v, and so T = λI, where I is the identity transformation.

(6.) Show that if T is a diagonalizable linear operator on an n-dimensional vector space
V with eigenvalues λ1, λ2, . . . , λk, then each vector v in V can be expressed uniquely as

v = v1 + v2 + · · ·+ vk

where vi ∈ Eλi
.

Since T is diagonalizable, there is a basis for V consisting of eigenvectors for T . Say
β = {v1,1, v1,2, . . . , v1,m1 , v2,1, v2,2, . . . , v2,m2 , . . . , vk,1, vk,2, . . . , vk,mk

}, where each vi,j is an
eigenvector corresponding to eigenvalue λi, so vi,j ∈ Eλi

.
Since β is a basis, any v ∈ V can be written as

v =
k∑
i=1

mi∑
j=1

ai,jvi,j.

Since vi,j ∈ Eλi, we have
mi∑
j=1

ai,jvi,j ∈ Eλi
.

This shows we can express v as the sum of elements v1, v2, . . . , vk where vi =

mi∑
j=1

ai,jvi,j ∈ Eλi
.

To show this expression is unique, suppose we have

v = v1 + v2 + · · ·+ vk = w1 + w2 + · · ·+ wk
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where vi, wi ∈ Eλi
. We must show vi = wi for all i. We have

(v1 + v2 + · · ·+ vk)− (w1 + w2 + · · ·+ wk) = (v1 − w1) + (v2 − w2) + · · ·+ (vn − wn) = 0,

where (vi − wi) ∈ Eλi
. If any of the (vi − wi) are nonzero, we have a contradiction to

Theorem 5.5 (eigenvectors that correspond to distinct eigenvalues are linearly independent).
Therefore vi − wi = 0 for all i, so vi = wi for all i.
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