Math 24
Winter 2010
Wednesday, February 24
(1.) TRUE or FALSE?
(a.) Every linear operator on an $n$-dimensional vector space has $n$ distinct eigenvalues.
(b.) If a real matrix has one eigenvector, then it has an infinite number of eigenvectors.
(c.) There exists a square matrix with no eigenvectors.
(d.) Eigenvalues must be nonzero scalars.
(e.) Any two eigenvectors are linearly independent.
(f.) The sum of two eigenvalues of a linear operator $T$ is also an eigenvalue of $T$.
(g.) Linear operators on infinite-dimensional vector spaces never have eigenvalues.
(h.) An $n \times n$ matrix $A$ with entries from a field $F$ is similar to a diagonal matrix if and only if there is a basis for $F^{n}$ consisting of eigenvectors of $A$.
(i.) Similar matrices always have the same eigenvalues.
(j.) Similar matrices always have the same eigenvectors.
(k.) The sum of two eigenvectors of an operator $T$ is always an eigenvector of $T$.
(l.) Any linear operator on an $n$-dimensional vector space that has fewer than $n$ distinct eigenvalues is not diagonalizable.
(m.) Two distinct eigenvalues corresponding to the same eigenvalue are always linearly dependent.
(n.) If $\lambda$ is an eigenvalue of a linear operator $T$, then each vector in $E_{\lambda}$ is an eigenvalue of $T$.
(o.) If $\lambda_{1}$ and $\lambda_{2}$ are distinct eigenvalues of a linear operator $T$, then $E_{\lambda_{1}} \cap E_{\lambda_{2}}=\{0\}$.
(p.) Let $A \in M_{n \times n}(F)$ and $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an ordered basis for $F^{n}$ consisting of eigenvectors of $A$. If $Q$ is the $n \times n$ matrix whose $j^{\text {th }}$ column is $v_{n}(1 \leq j \leq n)$, then $Q^{-1} A Q$ is a diagonal matrix.
(q.) A linear operator $T$ on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue $\lambda$ equals the dimension of $E_{\lambda}$.
(r.) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.
(s.) You can always tell from the characteristic polynomial of $A$ whether $A$ is diagonalizable.
(t.) You can sometimes tell from the characteristic polynomial of $A$ whether $A$ is diagonalizable.
(u.) You can always tell from the characteristic polynomial of $A$ whether $A$ is invertible.
(2.) Find an invertible matrix $Q$ and find a diagonalizable matrix $B$ such that either $Q A Q^{-1}=B$ or $Q^{-1} A Q=B$. Be sure to say which of these two equations holds for your $Q$ and $B$.

$$
A=\left(\begin{array}{ccc}
1 & -7 & 2 \\
0 & 2 & 0 \\
0 & -10 & 2
\end{array}\right)
$$

(3.) For the matrix $A$ in problem (2), find a basis for the eigenspace of $A$ corresponding to each eigenvalue. Describe each of these eigenspaces geometrically. (Be specific. Don't just say "a line"; specify which line.)
(4.) Test the matrix $A$ for diagonalizability.

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(5.) Suppose a linear operator $T$ on an $n$-dimensional vector space $V$ has only one eigenvalue $\lambda=1$, and $T$ is diagonalizable. What can you conclude about $T$ ?

What can you say in general about diagonalizable linear operators with a single eigenvalue?
(6.) Show that if $T$ is a diagonalizable linear operator on an $n$-dimensional vector space $V$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then each vector $v$ in $V$ can be expressed uniquely as

$$
v=v_{1}+v_{2}+\cdots+v_{k}
$$

where $v_{i} \in E_{\lambda_{i}}$.

