Math 24
Winter 2010
Monday, February 22
(3.) Find the eigenvalues, and a basis for each of the corresponding eigenspaces, of the $\operatorname{matrix}\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$. Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of this matrix?

The characteristic polynomial of $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$ is
$\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{ccc}1-t & 1 & 1 \\ 0 & 1-t & 1 \\ 0 & 0 & -1-t\end{array}\right)=(1-t)^{2}(-1-t)$. The eigenvalues of A are the roots of this polynomial, 1 (multiplicity 2) and -1 (multiplicity 1).

To find the eigenspace corresponding to $\lambda=-1$, we find the null space of $A-\lambda I$, or $\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0\end{array}\right)$. Solving $\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, we get $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-\frac{1}{4} x_{3} \\ -\frac{1}{2} x_{3} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right)$, so a basis for the eigenspace is $\left\{\left(\begin{array}{c}-\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right)\right\}$.

To find the eigenspace corresponding to $\lambda=1$, we find the null space of $A-\lambda I$, or $\left(\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -2\end{array}\right)$. Solving $\left(\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, we get $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right)=x_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, so a basis for the eigenspace is $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$.

Since the eigenvalue 1 has multiplcity 2 , but its eigenspace has dimension $1, A$ is not diagonalizable and there is no basis of eigenvectors.

