Math 24
Winter 2010
Friday, February 19
(1.) Find the eigenvalues, and a basis for each of the corresponding eigenspaces, of the matrix $\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & 1 & 0\end{array}\right)$. Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of this matrix?

The characteristic polynomial of this matrix is
$\operatorname{det}\left(\begin{array}{ccc}-t & 1 & -1 \\ 0 & 1-t & 0 \\ -1 & 1 & -t\end{array}\right)=(1-t)\left(t^{2}-1\right)=(1-t)(t-1)(t+1)$.
(The easy way to compute this is cofactor expansion along the second row.) It has two roots, $\lambda=1$ (a double root) and $\lambda=-1$ (a single root).

To find eigenvectors of A associated with the eigenvalue λ, we wish to solve the matrix equation $A x=\lambda x$, which can be rewritten as $A x=\lambda(I x)$, or $(A-\lambda I) x=0$. To do this, we can row reduce the matrix $A-\lambda I$.

For $\lambda=-1$, we row reduce $\left(\begin{array}{ccc}0-(-1) & 1 & -1 \\ 0 & 1-(-1) & 0 \\ -1 & 1 & 0-(-1)\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1\end{array}\right)$ to get

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) . \text { This is the coefficient matrix of the homogeneous system of linear equations } \\
\quad \begin{array}{c}
x_{1}-x_{3}=0 \\
x_{2}=0 \\
0
\end{array} \\
0=0
\end{gathered}
$$

The first equation begins with x_{1}, and can be used to determine the value of x_{1} :

$$
x_{1}=x_{3}
$$

The second equation begins with x_{2}, and can be used to determine the value of x_{2} $x_{2}=0$.
There is no equation remaining to determine the value of x_{3}, so x_{3} can be anything. Because there is one variable whose value is not determined by an equation, we will have one parameter in the solution set, and the solution set will be one-dimensional.

Set $x_{3}=s$ (where the parameter s can be any real number). Then the values of the other variables are determined as $x_{1}=x_{3}=s$, and $x_{2}=0$. The complete solution set to $(A-\lambda I) x=0$, where A is the matrix of the problem and λ is -1 , is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
s \\
0 \\
s
\end{array}\right)=s\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

Since $(A-\lambda I) x=0$ is equivalent to $A x=\lambda x$, the vector $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ is an eigenvector of A corresponding to the eigenvalue $\lambda=-1$, and $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for the eigenspace of A corresponding to the eigenvalue $\lambda=-1$.

For $\lambda=1$, we row reduce $\left(\begin{array}{ccc}0-1 & 1 & -1 \\ 0 & 1-1 & 0 \\ -1 & 1 & 0-1\end{array}\right)=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & 1 & -1\end{array}\right)$ to get $\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
This is the coefficient matrix of the homogeneous system of linear equations

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=0 \\
& 0=0 \\
& 0=0
\end{aligned}
$$

The first equation begins with x_{1}, and can be used to determine the value of x_{1} :

$$
x_{1}=x_{2}-x_{3}
$$

There is no equation remaining to determine the value of x_{2} or of x_{3}, so x_{2} and x_{3} can be anything. Because there are two variables whose value is not determined by an equation, we will have two parameters in the solution set, and the solution set will be two-dimensional.

Set $x_{2}=s$ and $x_{3}=t$ (where the parameters s and t can be any real numbers). Then the value of the other variable is determined as $x_{1}=x_{2}-x_{3}=s-t$. The complete solution set to $(A-\lambda I) x=0$, where A is the matrix of the problem and λ is 1 , is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
s-t \\
s \\
t
\end{array}\right)=s\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

Since $(A-\lambda I) x=0$ is equivalent to $A x=\lambda x$, the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ are eigenvectors of A corresponding to the eigenvalue $\lambda=1$, and $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for the eigenspace of A corresponding to the eigenvalue $\lambda=1$.

Since we found three linearly independent eigenvectors, $\beta=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$ forms a basis for \mathbb{R}^{3} consisting of eigenvectors of A.

A diagonal matrix similar to A is $\left[L_{A}\right]_{\beta}$. Note that if α is the standard ordered basis, then $A=\left[L_{A}\right]_{\alpha}=Q\left[L_{A}\right]_{\beta} Q^{-1}$ where Q is the change of coordinate matrix that changes β coordinates to α coordinates.

