Math 24 Winter 2010 Friday, February 19

(1.) Find the eigenvalues, and a basis for each of the corresponding eigenspaces, of the matrix $\begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$. Is there a basis for \mathbb{R}^3 consisting of eigenvectors of this matrix?

The characteristic polynomial of this matrix is

$$det \begin{pmatrix} -t & 1 & -1 \\ 0 & 1-t & 0 \\ -1 & 1 & -t \end{pmatrix} = (1-t)(t^2-1) = (1-t)(t-1)(t+1).$$

(The easy way to compute this is cofactor expansion along the second row.) It has two roots, $\lambda = 1$ (a double root) and $\lambda = -1$ (a single root).

To find eigenvectors of A associated with the eigenvalue λ , we wish to solve the matrix equation $Ax = \lambda x$, which can be rewritten as $Ax = \lambda(Ix)$, or $(A - \lambda I)x = 0$. To do this, we can row reduce the matrix $A - \lambda I$.

For
$$\lambda = -1$$
, we row reduce $\begin{pmatrix} 0 - (-1) & 1 & -1 \\ 0 & 1 - (-1) & 0 \\ -1 & 1 & 0 - (-1) \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}$ to get $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. This is the coefficient matrix of the homogeneous system of linear equations $x_1 - x_3 = 0$
 $x_2 = 0$
 $0 = 0$

The first equation begins with x_1 , and can be used to determine the value of x_1 :

 $x_1 = x_3$

The second equation begins with x_2 , and can be used to determine the value of x_2 $x_2 = 0$.

There is no equation remaining to determine the value of x_3 , so x_3 can be anything. Because there is one variable whose value is not determined by an equation, we will have one *parameter* in the solution set, and the solution set will be one-dimensional.

Set $x_3 = s$ (where the parameter s can be any real number). Then the values of the other variables are determined as $x_1 = x_3 = s$, and $x_2 = 0$. The complete solution set to $(A - \lambda I)x = 0$, where A is the matrix of the problem and λ is -1, is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} s \\ 0 \\ s \end{pmatrix} = s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Since $(A - \lambda I)x = 0$ is equivalent to $Ax = \lambda x$, the vector $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ is an eigenvector of A

corresponding to the eigenvalue $\lambda = -1$, and $\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ is a basis for the eigenspace of A corresponding to the eigenvalue $\lambda = -1$.

For
$$\lambda = 1$$
, we row reduce $\begin{pmatrix} 0 - 1 & 1 & -1 \\ 0 & 1 - 1 & 0 \\ -1 & 1 & 0 - 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & 1 & -1 \end{pmatrix}$ to get $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

This is the coefficient matrix of the homogeneous system of linear equations

 $\begin{aligned}
 x_1 - x_2 + x_3 &= 0 \\
 0 &= 0 \\
 0 &= 0
\end{aligned}$

The first equation begins with x_1 , and can be used to determine the value of x_1 :

 $x_1 = x_2 - x_3$

There is no equation remaining to determine the value of x_2 or of x_3 , so x_2 and x_3 can be anything. Because there are two variables whose value is not determined by an equation, we will have two *parameters* in the solution set, and the solution set will be two-dimensional.

Set $x_2 = s$ and $x_3 = t$ (where the parameters s and t can be any real numbers). Then the value of the other variable is determined as $x_1 = x_2 - x_3 = s - t$. The complete solution set to $(A - \lambda I)x = 0$, where A is the matrix of the problem and λ is 1, is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} s-t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Since $(A - \lambda I)x = 0$ is equivalent to $Ax = \lambda x$, the vectors $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ are eigen-

vectors of A corresponding to the eigenvalue $\lambda = 1$, and $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is a basis for the eigenspace of A corresponding to the eigenvalue $\lambda = 1$.

Since we found three linearly independent eigenvectors, $\beta = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$ forms a basis for \mathbb{R}^3 consisting of eigenvectors of A.

A diagonal matrix similar to A is $[L_A]_{\beta}$. Note that if α is the standard ordered basis, then $A = [L_A]_{\alpha} = Q[L_A]_{\beta}Q^{-1}$ where Q is the change of coordinate matrix that changes β coordinates to α coordinates.