Math 24
Winter 2010
Wednesday, February 17
(1.) TRUE or FALSE?
(a.) If E is an elementary matrix, then $\operatorname{det}(E)= \pm 1$.
(b.) For any $A, B \in M_{n \times n}(F), \operatorname{det}(A B)=(\operatorname{det}(A))(\operatorname{det}(B))$.
(c.) A matrix $A \in M_{n \times n}(F)$ is invertible if and only if $\operatorname{det}(A)=0$.
(d.) A matrix $A \in M_{n \times n}(F)$ has rank n if and only if $\operatorname{det}(A) \neq 0$.
(e.) For any $A \in M_{n \times n}(F), \operatorname{det}\left(A^{t}\right)=-\operatorname{det}(A)$.
(f.) The determinant of a square matrix can be evaluated by cofactor expansion along any column.
(g.) Every system of n linear equations in n unknowns can be solved by Cramer's rule.
(h.) Let $A x=b$ be the matrix form of a system of n linear equations in n unknowns, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. If $\operatorname{det}(A) \neq 0$ and if M_{k} is the $n \times n$ matrix obtained from A by replacing row k of A by b^{t}, then the unique solution of $A x=b$ is

$$
x_{k}=\frac{\operatorname{det}\left(M_{k}\right)}{\operatorname{det}(A)} \text { for } k=1,2, \ldots, n .
$$

(i.) If Q is an invertible matrix, then $\operatorname{det}\left(Q^{-1}\right)=\frac{1}{\operatorname{det}(Q)}$.
(j.) The determinant of a lower triangular $n \times n$ matrix is the product of its diagonal entries. (A matrix is lower triangular if the only nonzero entries are on or below the main diagonal.)
(2.) Let A be an $n \times n$ matrix, and k a scalar. Find the determinant of $k A$ in terms of the determinant of A.
(3.) Show that if A and B are similar $n \times n$ matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.
(4.) Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & I
\end{array}\right)
$$

where A is a square matrix, 0 is a zero matrix, and I is an $m \times m$ identity matrix. Prove that $\operatorname{det}(M)=\operatorname{det}(A)$.
(5.) Let $A \in M_{n \times n}(F)$ be nonzero. For any m with $1 \leq m \leq n$, an $m \times m$ submatrix is obtained by deleting $n-m$ rows and $n-m$ columns of A. For example, if we start with $A=\left(\begin{array}{cccc}1 & 1 & 1 & 4 \\ 2 & 3 & 1 & 8 \\ -2 & 0 & 0 & -4 \\ 1 & 4 & 4 & 10\end{array}\right)$ and delete rows 2 and 3 and columns 2 and 4 , we get the 2×2 submatrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right)$.
(a.) Show that if A is an $n \times n$ matrix and there is a $k \times k$ submatrix of A with nonzero determinant, then $\operatorname{rank}(A) \geq k$.
(b.) Show that if A is an $n \times n$ matrix with rank k, then there is a $k \times k$ submatrix of A with nonzero determinant.

