Math 24
Winter 2010
Monday, January 4
In class today we discussed fields, which are defined in Appendix C of your textbook. All you really need to know about fields for this course is the following:

Important examples of fields are the real numbers \mathbb{R}, the complex numbers \mathbb{C}, and the rational numbers \mathbb{Q}.

Two other, rather different, examples of fields are the two-element field $\mathbb{Z} / 2 \mathbb{Z}$ (also denoted F_{2}) and the three-element field $\mathbb{Z} / 3 \mathbb{Z}$ (also denoted F_{3}). These are the integers modulo 2 and modulo 3 respectively. If you are not familiar with modular arithmetic, you can define these fields as follows.

The elements of F_{2} are $\overline{0}$ and $\overline{1}$ (which you can think of as "even" and "odd"). The operations are given by the following tables.

The elements of F_{3} are $\overline{0}, \overline{1}$ and $\overline{2}$. The operations are given by the following tables.

$+$	$\overline{0}$	$\overline{1}$	$\overline{2}$		$\overline{0}$	$\overline{1}$	$\overline{2}$
-	-	-	-	-	-	-	-
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$	$\overline{1}$	$\overline{0}$	T	$\overline{2}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

These fields differ from each other in their characteristic. The fields \mathbb{R}, \mathbb{C}, and \mathbb{Q} are all of characteristic zero, which means that

$$
1+1+\cdots+1 \neq 0
$$

The fields F_{2} and F_{3} are of finite characteristic, which means that adding 1 to itself a finite number of times will eventually yield zero. Specifically, in F_{2} we have $1+1=0$; we say that F_{2} has characteristic 2. Similarly, in F_{3} we have $1+1+1=0$; we say that F_{3} has characteristic 3.

Now, here are some things about fields that you do not need to know for this course, but may be interested in.

For any integer $n \geq 2$ we can define the integers modulo n, or $\mathbb{Z} / n \mathbb{Z}$. (The notation $\mathbb{Z} / n \mathbb{Z}$ will make a little more sense to you when we encounter a similar notation in our study of vector spaces.) The elements of $\mathbb{Z} / n \mathbb{Z}$ are $\overline{0}, \overline{1}, \ldots, \overline{n-1}$. To add and multiply modulo n, add and multiply as usual, divide by n and take the remainder. For example, in $\mathbb{Z} / 5 \mathbb{Z}$, we have $\overline{2}+\overline{2}=\overline{4}$ but $\overline{3}+\overline{3}=\overline{1}$, because $3+3=6$ and when 6 is divided by 5 the remainder is 1 .

However, $\mathbb{Z} / n \mathbb{Z}$ is not always a field, because it is not always the case that all elements have multiplicative inverses. For example, in $\mathbb{Z} / 4 \mathbb{Z}$, the element $\overline{2}$ has no multiplicative inverse. We can see this because any multiple of 2 is even, and when divided by 4 has remainder 0 or 2 ; therefore, in $\mathbb{Z} / 4 \mathbb{Z}$, any multiple of $\overline{2}$ is either $\overline{0}$ or $\overline{2}$, not $\overline{1}$. (We could also check this by directly computing all the multiples of $\overline{2}$; there are only four of them.)

It turns out that $\mathbb{Z} / n \mathbb{Z}$ is a field exactly in case n is prime. If you are up for a challenge, try proving that. (Hints available.) The field $\mathbb{Z} / p \mathbb{Z}$, for p a prime number, is also denoted F_{p}.

In Appendix C of the textbook, it is claimed that the set of real numbers of the form $a+b \sqrt{2}$, where a and b are rational numbers, forms a field. You might try checking this. Most of the axioms are not too hard to check; the existence of multiplicative inverses is the one that needs a little cleverness.

