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(1.) TRUE or FALSE?

(a.) The rank of a matrix is equal to the number of its nonzero columns.

FALSE. It is the maximum number of linearly independent columns.

(b.) The product of two matrices always has rank equal to the lesser of the ranks of the
two matrices.

FALSE. The rank cannot be larger than this, but it can be smaller.

(c.) The m× n zero matrix is the only m× n matrix having rank 0.

TRUE.

(d.) Elementary row operations preserve rank.

TRUE. Elementary row operations do not change N(LA), so they preserve the nullity,
and therefore the rank, of LA.

(e.) Elementary column operations do not necessarily preserve rank.

FALSE. Elementary column operations do not change R(LA), so they preserve the rank
of LA.

(f.) The rank of a matrix is equal to the maximum number of linearly independent rows
in the matrix.

TRUE. A and At have the same rank.

(g.) The inverse of a matrix can be computed exclusively by means of elementary row
operations.

TRUE. It can also, alternatively, be computed by means of elementary column operations.

(h.) The rank of an m× n matrix is at most the smaller of m and n.

TRUE. It can, however, be smaller.

(i.) An n× n matrix having rank n is invertible.

TRUE. If the rank of LA is n, then LA is invertible, and so A is invertible.

(2.) For each matrix, find the rank, and compute the inverse (if it exists):

We try to transform A to I using elementary row operations, and simultaneously perform
the same elementary row operations on I to transform I to A−1. Some of the steps shown
here involve two elementary row operations.

(a.)

1 2 1
1 3 4
2 3 −1


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1 2 1 | 1 0 0
1 3 4 | 0 1 0
2 3 −1 | 0 0 1

 −→

1 2 1 | 1 0 0
0 1 3 | −1 1 0
0 −1 −3 | −2 0 1

 −→

1 0 −5 | 3 −2 0
0 1 3 | −1 1 0
0 0 0 | −3 1 1

.

The transformed matrix on the left has two linearly independent columns, so the rank of
the original matrix is 2, and it is not invertible.

(b.)

0 −2 4
1 1 −1
2 4 −5


0 −2 4 | 1 0 0

1 1 −1 | 0 1 0
2 4 −5 | 0 0 1

 −→

1 1 −1 | 0 1 0
0 −2 4 | 1 0 0
2 4 −5 | 0 0 1

 −→

1 1 −1 | 0 1 0
0 −2 4 | 1 0 0
0 2 −3 | 0 −2 1

 −→

1 1 −1 | 0 1 0
0 1 −2 | −1

2
0 0

0 2 −3 | 0 −2 1

 −→

1 0 1 | 1
2

1 0
0 1 −2 | −1

2
0 0

0 0 1 | 1 −2 1

 −→

1 0 0 | −1
2

3 −1
0 1 0 | 3

2
−4 2

0 0 1 | 1 −2 1

.

The original matrix was transformed to the identity matrix, so its rank is 3, and the
transformed matrix on the right is its inverse.

(3.) Let A be an m× n matrix with rank m. Prove that there exists an n×m matrix B
such that AB = Im. (Hint: Think about the linear transformation LA.)

If B is an n × m matrix, then LAB = LALB is a function from Fm to Fm. If LAB is
the identity transformation, then AB is the identity matrix. Therefore, we want to find a
matrix B such that LALB is the identity transformation.

The linear transformation LA : F n → Fm has rank m (because the rank of A is the rank
of LA). Because the rank of LA equals the dimension of the codomain, LA is onto. This
means every vector in Fm is in the range.

In particular, if e1, e2, . . . , em are the standard basis vectors of Fm, we can find v1, v2,
. . . , vm in F n such that, for all i, we have ei = LA(vi).

Now let T : Fm → F n be the linear transformation such that T (ei) = vi. (We know
there is such a linear transformation because the ei form a basis.) There is an n×m matrix
B such that T = LB. (The matrix B is the matrix representing T relative to the standard
bases.) Hence, for all i, we have LB(ei) = T (ei) = vi.

Now, for all i we have LA(LB(ei)) = LA(vi) = ei. That is, the composition LALB sends
each basis vector to itself. Because a linear transformation is determined by what it does to
the basis vectors, this means LALB is the identity transformation, and we are done.
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