Math 24 Winter 2010 Monday, February 1

(1.) TRUE or FALSE?

(a.) Suppose that $\beta = \{x_1, x_2, \dots, x_n\}$ and $\beta' = \{x'_1, x'_2, \dots, x'_n\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β' coordinates into β coordinates. Then the j^{th} column of Q is $[x_j]_{\beta'}$.

FALSE. The j^{th} column of Q is $[x'_i]_{\beta}$.

(b.) Every change of coordinate matrix is invertible.

TRUE. The inverse is the matrix that changes coordinates back again.

(c.) Let T be a linear operator on a finite-dimensional vector space V, let β and β' be ordered bases for V, and let Q be the change of coordinate matrix that changes β' coordinates into β coordinates. Then $[T]_{\beta} = Q[T]_{\beta'}Q^{-1}$.

TRUE.

(d.) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B = Q^t A Q$ for some $Q \in M_{n \times n}(F)$.

FALSE. A and B are similar if $B = Q^{-1}AQ$ for some $Q \in M_{n \times n}(F)$.

(e.) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for V, $[T]_{\beta}$ is similar to $[T]_{\gamma}$.

TRUE. This is why similar matrices are interesting.

(f.) Suppose that $\beta = \{x_1, x_2, \dots, x_n\}$ and $\beta' = \{x'_1, x'_2, \dots, x'_n\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β' coordinates into β coordinates. Then $Q = [I_V]^{\beta}_{\beta'}$.

TRUE. This is how we arrive at change of coordinate matrices.

(g.) Every invertible matrix is a change of coordinate matrix.

TRUE. If A is invertible, so is L_A , and therefore the columns of A, which span the range of L_A , must be linearly independent. Then A is the matrix that changes β coordinates into standard coordinates in F^n , where β is the ordered basis consisting of the columns of A.

For the next problems you may use the following fact (which you can check by multiplying these matrices together): If $ad - bc \neq 0$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Please note, I don't guarantee that the arithmetic in these solutions is always correct.

(2.) Let α be the standard ordered basis for \mathbb{R}^2 , β be the ordered basis $\{(1,2), (2,-1)\}$, and γ be the ordered basis $\{(1,-1), (1,1)\}$. Write down the change of coordinate matrices for changing:

 β coordinates into α coordinates.

The columns of this matrix are the α coordinates of the elements of the basis β . Since α is the standard basis, we can just write this one down.

$$Q^{\alpha}_{\beta} = \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}.$$

 α coordinates into β coordinates.

$$Q_{\alpha}^{\beta} = (Q_{\beta}^{\alpha})^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix}.$$

 γ coordinates into α coordinates.

$$Q^{\alpha}_{\gamma} = \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}.$$

 α coordinates into γ coordinates.

$$Q_{\alpha}^{\gamma} = (Q_{\gamma}^{\alpha})^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \\ \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

 β coordinates into γ coordinates.

To change from β coordinates to γ coordinates, we can first change from β coordinates to α coordinates, and then from α coordinates to γ coordinates.

$$Q_{\beta}^{\gamma} = Q_{\alpha}^{\gamma} Q_{\beta}^{\alpha} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}.$$

 γ coordinates into β coordinates.

$$Q_{\gamma}^{\beta} = \begin{pmatrix} -\frac{1}{5} & \frac{3}{5} \\ \\ \frac{3}{5} & \frac{1}{5} \end{pmatrix}.$$

(3.) Here α , β , and γ are the same ordered bases for \mathbb{R}^2 as in problem (2).

(a.) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation T(a, b) = (a + b, a - b). Write down the matrices $[T]_{\alpha}, [T]_{\beta}, [T]_{\gamma}$, and $[T]_{\beta}^{\gamma}$.

T(1,0) = (1,1) and T(0,1) = (1,-1), so the matrix of T in the standard basis is $[T]_{\alpha} = [T]_{\alpha}^{\alpha} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$ $[T]_{\beta} = [T]_{\beta}^{\beta} = Q_{\alpha}^{\beta}[T]_{\alpha}^{\alpha}Q_{\beta}^{\alpha} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & \frac{7}{5} \\ \frac{7}{5} & -\frac{1}{5} \end{pmatrix}$

$$\begin{split} [T]_{\gamma} &= [T]_{\gamma}^{\gamma} = Q_{\alpha}^{\gamma} [T]_{\alpha}^{\alpha} Q_{\gamma}^{\alpha} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \\ [T]_{\beta}^{\gamma} &= [T]_{\gamma}^{\gamma} Q_{\beta}^{\gamma} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}. \end{split}$$

(b.) Let $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$. Write down the matrices $[L_{A}]_{\alpha}, [L_{A}]_{\beta}, [L_{A}]_{\gamma}, \text{ and } [L_{A}]_{\beta}^{\gamma}. \end{split}$

Since α is the standard basis, $[L_A]_{\alpha} = A$. We can find $[L_A]_{\beta}$, $[L_A]_{\gamma}$, and $[L_A]_{\beta}^{\gamma}$ in the same way as in part (a).

(4.) If $\beta = \{2x^2 - x, 3x^2 + 1, x^2\}$ and $\beta' = \{1, x, x^2\}$ are ordered bases for $P_2(\mathbb{R})$, find the change of coordinate matrix that changes β' coordinates into β coordinates.

The column of this matrix are $[1]_{\beta}$, $[x]_{\beta}$, and $[x^2]_{\beta}$. To find the first column, we solve $1 = a(2x^2 - x) + b(3x^2 + 1) + cx^2$ to get a = 0, b = 1, c = -3, and so $[1]_{\beta} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$. Finding $[x]_{\beta}$ and $[x^2]_{\beta}$ in the same way, we get $Q_{\beta'}^{\beta} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1 \end{pmatrix}$.