Math 24
Winter 2010
Monday, February 1
(1.) TRUE or FALSE?
(a.) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then the $j^{\text {th }}$ column of Q is $\left[x_{j}\right]_{\beta^{\prime}}$.

FALSE. The $j^{\text {th }}$ column of Q is $\left[x_{j}^{\prime}\right]_{\beta}$.
(b.) Every change of coordinate matrix is invertible.

TRUE. The inverse is the matrix that changes coordinates back again.
(c.) Let T be a linear operator on a finite-dimensional vector space V, let β and β^{\prime} be ordered bases for V, and let Q be the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then $[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}$.

TRUE.
(d.) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B=Q^{t} A Q$ for some $Q \in$ $M_{n \times n}(F)$.

FALSE. A and B are similar if $B=Q^{-1} A Q$ for some $Q \in M_{n \times n}(F)$.
(e.) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for $V,[T]_{\beta}$ is similar to $[T]_{\gamma}$.

TRUE. This is why similar matrices are interesting.
(f.) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.

TRUE. This is how we arrive at change of coordinate matrices.
(g.) Every invertible matrix is a change of coordinate matrix.

TRUE. If A is invertible, so is L_{A}, and therefore the columns of A, which span the range of L_{A}, must be linearly independent. Then A is the matrix that changes β coordinates into standard coordinates in F^{n}, where β is the ordered basis consisting of the columns of A.

For the next problems you may use the following fact (which you can check by multiplying these matrices together): If $a d-b c \neq 0$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Please note, I don't guarantee that the arithmetic in these solutions is always correct.
(2.) Let α be the standard ordered basis for \mathbb{R}^{2}, β be the ordered basis $\{(1,2),(2,-1)\}$, and γ be the ordered basis $\{(1,-1),(1,1)\}$. Write down the change of coordinate matrices for changing:
β coordinates into α coordinates.
The columns of this matrix are the α coordinates of the elements of the basis β. Since α is the standard basis, we can just write this one down.
$Q_{\beta}^{\alpha}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)$.
α coordinates into β coordinates.
$Q_{\alpha}^{\beta}=\left(Q_{\beta}^{\alpha}\right)^{-1}=\left(\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right)$.
γ coordinates into α coordinates.
$Q_{\gamma}^{\alpha}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
α coordinates into γ coordinates.

$$
Q_{\alpha}^{\gamma}=\left(Q_{\gamma}^{\alpha}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

β coordinates into γ coordinates.
To change from β coordinates to γ coordinates, we can first change from β coordinates to α coordinates, and then from α coordinates to γ coordinates.

$$
Q_{\beta}^{\gamma}=Q_{\alpha}^{\gamma} Q_{\beta}^{\alpha}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) .
$$

γ coordinates into β coordinates.

$$
Q_{\gamma}^{\beta}=\left(\begin{array}{cc}
-\frac{1}{5} & \frac{3}{5} \\
\frac{3}{5} & \frac{1}{5}
\end{array}\right) .
$$

(3.) Here α, β, and γ are the same ordered bases for \mathbb{R}^{2} as in problem (2).
(a.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(a, b)=(a+b, a-b)$. Write down the matrices $[T]_{\alpha},[T]_{\beta},[T]_{\gamma}$, and $[T]_{\beta}^{\gamma}$.

$$
\begin{aligned}
& T(1,0)=(1,1) \text { and } T(0,1)=(1,-1) \text {, so the matrix of } T \text { in the standard basis is } \\
& {[T]_{\alpha}=[T]_{\alpha}^{\alpha}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .} \\
& {[T]_{\beta}=[T]_{\beta}^{\beta}=Q_{\alpha}^{\beta}[T]_{\alpha}^{\alpha} Q_{\beta}^{\alpha}=\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{5} & \frac{7}{5} \\
\frac{7}{5} & -\frac{1}{5}
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& {[T]_{\gamma}=[T]_{\gamma}^{\gamma}=Q_{\alpha}^{\gamma}[T]_{\alpha}^{\alpha} Q_{\gamma}^{\alpha}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)} \\
& {[T]_{\beta}^{\gamma}=[T]_{\gamma}^{\gamma} Q_{\beta}^{\gamma}=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right) .}
\end{aligned}
$$

(b.) Let $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$. Write down the matrices $\left[L_{A}\right]_{\alpha},\left[L_{A}\right]_{\beta},\left[L_{A}\right]_{\gamma}$, and $\left[L_{A}\right]_{\beta}^{\gamma}$.

Since α is the standard basis, $\left[L_{A}\right]_{\alpha}=A$. We can find $\left[L_{A}\right]_{\beta},\left[L_{A}\right]_{\gamma}$, and $\left[L_{A}\right]_{\beta}^{\gamma}$ in the same way as in part (a).
(4.) If $\beta=\left\{2 x^{2}-x, 3 x^{2}+1, x^{2}\right\}$ and $\beta^{\prime}=\left\{1, x, x^{2}\right\}$ are ordered bases for $P_{2}(\mathbb{R})$, find the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates.

The column of this matrix are $[1]_{\beta},[x]_{\beta}$, and $\left[x^{2}\right]_{\beta}$. To find the first column, we solve $1=a\left(2 x^{2}-x\right)+b\left(3 x^{2}+1\right)+c x^{2}$ to get $a=0, b=1, c=-3$, and so $[1]_{\beta}=\left(\begin{array}{c}0 \\ 1 \\ -3\end{array}\right)$. Finding $[x]_{\beta}$ and $\left[x^{2}\right]_{\beta}$ in the same way, we get $Q_{\beta^{\prime}}^{\beta}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1\end{array}\right)$.

