Math 24
Winter 2010
Monday, February 1
(1.) TRUE or FALSE?
(a.) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then the $j^{\text {th }}$ column of Q is $\left[x_{j}\right]_{\beta^{\prime}}$.
(b.) Every change of coordinate matrix is invertible.
(c.) Let T be a linear operator on a finite-dimensional vector space V, let β and β^{\prime} be ordered bases for V, and let Q be the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then $[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}$.
(d.) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B=Q^{t} A Q$ for some $Q \in$ $M_{n \times n}(F)$.
(e.) Let T be a linear operator on a finite-dimensional vector space V. Then for any ordered bases β and γ for $V,[T]_{\beta}$ is similar to $[T]_{\gamma}$.
(f.) Suppose that $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates. Then $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.
(g.) Every invertible matrix is a change of coordinate matrix.

For the next problems you may use the following fact (which you can check by multiplying these matrices together): If $a d-b c \neq 0$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

(2.) Let α be the standard ordered basis for \mathbb{R}^{2}, β be the ordered basis $\{(1,2),(2,-1)\}$, and γ be the ordered basis $\{(1,-1),(1,1)\}$. Write down the change of coordinate matrices for changing:
β coordinates into α coordinates.
α coordinates into β coordinates.
γ coordinates into α coordinates.
α coordinates into γ coordinates.
β coordinates into γ coordinates.
γ coordinates into
β coordinates.
(3.) Here α, β, and γ are the same ordered bases for \mathbb{R}^{2} as in problem (2).
(a.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(a, b)=(a+b, a-b)$. Write down the matrices $[T]_{\alpha},[T]_{\beta},[T]_{\gamma}$, and $[T]_{\beta}^{\gamma}$.
(b.) Let $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$. Write down the matrices $\left[L_{A}\right]_{\alpha},\left[L_{A}\right]_{\beta},\left[L_{A}\right]_{\gamma}$, and $\left[L_{A}\right]_{\beta}^{\gamma}$.
(4.) If $\beta=\left\{2 x^{2}-x, 3 x^{2}+1, x^{2}\right\}$ and $\beta^{\prime}=\left\{1, x, x^{2}\right\}$ are ordered bases for $P_{2}(\mathbb{R})$, find the change of coordinate matrix that changes β^{\prime} coordinates into β coordinates.

