Math 24 Winter 2010 Friday, January 29

(1.) TRUE or FALSE? In each part, V and W are finite-dimensional vector spaces with ordered bases α and β respectively, $T: V \to W$ is linear, and A and B denote matrices.

(a.) $([T]^{\beta}_{\alpha})^{-1} = [T^{-1}]^{\beta}_{\alpha}$.

FALSE. Even if T were invertible, we would have $([T]^{\beta}_{\alpha})^{-1} = [T^{-1}]^{\alpha}_{\beta}$.

(b.) T is invertible if and only if T is one-to-one and onto.

TRUE. This is true for all functions, not just linear transformations.

(c.) $T = L_A$ where $A = [T]^{\beta}_{\alpha}$.

FALSE. T can be represented by L_A where $A = [T]^{\beta}_{\alpha}$, but T can also be represented by L_B , where $B = [T]^{\delta}_{\gamma}$ for some other ordered bases γ and δ .

(d.) $M_{2\times 3}(F)$ is isomorphic to F^5 .

FALSE. $M_{2\times 3}(F)$ is isomorphic to F^6 .

(e.) $P_n(F)$ is isomorphic to $P_m(F)$ if and only if n = m.

TRUE. Finite dimensional vector spaces over F are isomorphic if and only if they have the same dimension.

(f.) AB = I implies that A and B are invertible.

FALSE. But if A and B are square, then AB = I implies that A and B are invertible.

(g.) If A is invertible, then $(A^{-1})^{-1} = A$. TRUE.

(h.) A is invertible if and only if L_A is invertible.

TRUE. In this case $(L_A)^{-1} = L_{A^{-1}}$.

(i.) A must be square in order to possess an inverse.

TRUE, just as L_A must have $dim(domain(L_A)) = dim(codomain(L_A))$ in order to (possibly) be invertible.

(2.) For each linear transformation T, determine whether T is invertible and justify your answer.

(a.) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a, b) = (a - 2b, b, 3a + 4b).

NO, $dim(domain(T)) \neq dim(codomain(T))$.

(b.) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a, b) = (3a - 2, b, 4a).

NO, $dim(domain(T)) \neq dim(codomain(T))$.

(c.) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(a, b, c) = (3a - 2c, b, 3a + 4b). YES, dim(domain(T)) = dim(codomain(T)) and we can check that $N(T) = \{0\}$.

(d.) $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(p(x)) = p'(x).

NO, $dim(domain(T)) \neq dim(codomain(T))$.

(e.)
$$T: M_{2\times 2}(\mathbb{R}) \to P_3(\mathbb{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$.

NO, although dim(domain(T)) = dim(codomain(T)), T is not onto because $x^3 \notin R(T)$.

(f.)
$$T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$

YES, dim(domain(T)) = dim(codomain(T)) and we can check that $N(T) = \{0\}$.

(3.) Let
$$V = \left\{ \begin{pmatrix} a & a+b\\ 0 & c \end{pmatrix} \middle| a, b, c \in F \right\}$$
. Construct an isomorphism from V to F^3 .

Solution 1: $T\begin{pmatrix} a & a+b\\ 0 & c \end{pmatrix} = (a, b, c)$. This is linear and clearly onto, so as $dim(V) = dim(F^3)$, it must be an isomorphism.

Solution 2: Notice that V is actually the space of all 2×2 upper triangular matrices, so we can define T by $T\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = (a, b, c).$

To get another solution: Choose your favorite three linearly independent vectors in F^3 , v_1 , v_2 , and v_3 , and your favorite three linearly independent upper triangular 2×2 matrices, w_1 , w_2 and w_3 , and define $T(aw_1 + bw_2 + cw_3) = av_1 + bv_2 + cv_3$.

(4.) Let
$$\alpha$$
 be the standard ordered basis for \mathbb{R}^2 , and β be the ordered basis $\{(1, 2), (2, -1)\}$
(a.) Compute $[(1, 0)]_{\beta}$, $[(0, 1)]_{\beta}$, $[(1, 2)]_{\alpha}$, and $[(2, -1)]_{\alpha}$.
To find $[(1, 0)]_{\beta} = \binom{a}{b}$, solve $(1, 0) = a(1, 2) + b(2, -1)$ to get $a = \frac{1}{5}$ and $a = \frac{2}{5}$, so $[(1, 0)]_{\beta} = \binom{\frac{1}{5}}{\frac{2}{5}}$.
The same method gives $[(0, 1)]_{\beta} = \binom{\frac{2}{5}}{-\frac{1}{5}}$.
 $[(1, 2)]_{\alpha}$ expresses $(1, 2)$ in the standard basis, so $[(1, 2)]_{\alpha} = \binom{1}{2}$ and $[(2, -1)]_{\alpha} = \binom{2}{-1}$.
(b.) Let $\mathbb{I} = I_{\mathbb{R}^2}$ be the identity transformation on \mathbb{R}^2 defined by $\mathbb{I}(v) = v$. Compute $[\mathbb{I}]_{\alpha}^{\beta}$.

If (1,0) and (0,1) are the vectors of the standard ordered basis α , then the columns of $[\mathbb{I}]^{\beta}_{\alpha}$ are the coordinates of $\mathbb{I}(1,0) = (1,0)$ and $\mathbb{I}(0,1) = (0,1)$ in the ordered basis β , or $[(1,0)]_{\beta}$ and $[(0,1)]_{\beta}$, which we found in part (a): $[\mathbb{I}]^{\beta}_{\alpha} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$.

In the same way, $[\mathbb{I}]^{\alpha}_{\beta} = \begin{pmatrix} 1 & 2\\ 2 & -1 \end{pmatrix}$.

(c.) Because composition of linear transformations corresponds to multiplication of their matrices, we should have that $[\mathbb{I}]^{\beta}_{\alpha}[\mathbb{I}]^{\alpha}_{\beta} = [\mathbb{I}]^{\beta}_{\beta} = I$, where I is the 2×2 identity matrix. Check this by multiplying your matrices together.

$$\begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \\ \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Notice what these matrices are. The column vector $[v]_{\alpha}$ represents the coordinates of v in basis α , and the column vector $[\mathbb{I}]^{\beta}_{\alpha}[v]_{\alpha} = [\mathbb{I}(v)]_{\beta} = [v]_{\beta}$ represents the coordinates of v in basis β . If v = (x, y), then $\begin{pmatrix} x \\ y \end{pmatrix}$ gives the coordinates of v in the standard basis α , and the matrix product $[\mathbb{I}]^{\beta}_{\alpha}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s \\ t \end{pmatrix}$ gives the coordinates of v in the new basis β (which means that v = s(1, 2) + t(2, -1)). In other words, multiplying by the matrix $[\mathbb{I}]^{\beta}_{\alpha}$ changes from standard coordinates to β -coordinates, and multiplying by the inverse matrix $[\mathbb{I}]^{\alpha}_{\beta}$ changes from β -coordinates back to standard coordinates.

(d.) Notice that the vectors of β are perpendicular to each other. If the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is perpendicular projection onto the line through the origin in the direction of the vector (1, 2), we can express T by the formula T(s(1, 2) + t(2, -1)) = s(1, 2). Find the matrix $[T]_{\alpha}$ (that is, $[T]^{\alpha}_{\alpha}$) that represents T in the standard basis.

Hint: We can think of T as the three-step composition $\mathbb{I}T\mathbb{I}$ where \mathbb{I} is the identity transformation on \mathbb{R}^2 . You already found $[\mathbb{I}]^{\beta}_{\alpha}$ and $[\mathbb{I}]^{\alpha}_{\beta}$, and it's easy to write down $[T]_{\beta}$.

$$[T(1,2)]_{\beta} = [(1,2)]_{\beta} = \begin{pmatrix} 1\\0 \end{pmatrix} \text{ and } [T(2,-1)]_{\beta} = [(0,0)]_{\beta} = \begin{pmatrix} 0\\0 \end{pmatrix} \text{ so } [T]_{\beta}^{\beta} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}.$$
$$[T]_{\alpha}^{\alpha} = [\mathbb{I}]_{\beta}^{\alpha} [T]_{\beta}^{\beta} [\mathbb{I}]_{\alpha}^{\beta} = \begin{pmatrix} 1&2\\2&-1 \end{pmatrix} \begin{pmatrix} 1&0\\0&0 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{2}{5}\\\frac{2}{5} & -\frac{1}{5} \end{pmatrix} = \begin{pmatrix} 1&0\\2&0 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{2}{5}\\\frac{2}{5} & -\frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5}\\\frac{2}{5} & -\frac{1}{5} \end{pmatrix}.$$

(5.) Let $\alpha = \{v_1, v_2, \dots, v_n\}$ be a basis for V, let $\beta = \{w_1, w_2, \dots, w_m\}$ be a basis for V, and for any $i \leq n$ and $j \leq m$ define a linear transformation $T_{ij}: V \to W$ by

$$T_{ij}(v_k) = \begin{cases} w_j & \text{if } k = i; \\ 0 & \text{if } k \neq i. \end{cases}$$

Show that $\{T_{ij} \mid i \leq n \text{ and } j \leq m\}$ is a basis for $\mathcal{L}(V, W)$. (Hint: Show the isomorphism $\mathcal{R} : \mathcal{L}(V, W) \to M_{m \times n}(F)$ defined by $\mathcal{R}(T) = [T]^{\beta}_{\alpha}$ takes this set to a basis for $M_{m \times n}(F)$.)

 $\mathcal{R}(T_{ij})$ is the matrix A with $A_{ij} = 1$ and all other entries 0, so this set maps to the standard basis for $M_{m \times n}(F)$.