Math 24
Winter 2010
Friday, January 29
(1.) TRUE or FALSE? In each part, V and W are finite-dimensional vector spaces with ordered bases α and β respectively, $T: V \rightarrow W$ is linear, and A and B denote matrices.
(a.) $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\alpha}^{\beta}$.

FALSE. Even if T were invertible, we would have $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\beta}^{\alpha}$.
(b.) T is invertible if and only if T is one-to-one and onto.

TRUE. This is true for all functions, not just linear transformations.
(c.) $T=L_{A}$ where $A=[T]_{\alpha}^{\beta}$.

FALSE. T can be represented by L_{A} where $A=[T]_{\alpha}^{\beta}$, but T can also be represented by L_{B}, where $B=[T]_{\gamma}^{\delta}$ for some other ordered bases γ and δ.
(d.) $M_{2 \times 3}(F)$ is isomorphic to F^{5}.

FALSE. $M_{2 \times 3}(F)$ is isomorphic to F^{6}.
(e.) $P_{n}(F)$ is isomorphic to $P_{m}(F)$ if and only if $n=m$.

TRUE. Finite dimensional vector spaces over F are isomorphic if and only if they have the same dimension.
(f.) $A B=I$ implies that A and B are invertible.

FALSE. But if A and B are square, then $A B=I$ implies that A and B are invertible.
(g.) If A is invertible, then $\left(A^{-1}\right)^{-1}=A$.

TRUE.
(h.) A is invertible if and only if L_{A} is invertible.

TRUE. In this case $\left(L_{A}\right)^{-1}=L_{A^{-1}}$.
(i.) A must be square in order to possess an inverse.

TRUE, just as L_{A} must have $\operatorname{dim}\left(\operatorname{domain}\left(L_{A}\right)\right)=\operatorname{dim}\left(\operatorname{codomain}\left(L_{A}\right)\right)$ in order to (possibly) be invertible.
(2.) For each linear transformation T, determine whether T is invertible and justify your answer.
(a.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(a-2 b, b, 3 a+4 b)$.
$\mathrm{NO}, \operatorname{dim}(\operatorname{domain}(T)) \neq \operatorname{dim}(\operatorname{codomain}(T))$.
(b.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(3 a-2, b, 4 a)$.
$\mathrm{NO}, \operatorname{dim}(\operatorname{domain}(T)) \neq \operatorname{dim}(\operatorname{codomain}(T))$.
(c.) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b, c)=(3 a-2 c, b, 3 a+4 b)$.

YES, $\operatorname{dim}(\operatorname{domain}(T))=\operatorname{dim}(\operatorname{codomain}(T))$ and we can check that $N(T)=\{0\}$.
(d.) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
$\mathrm{NO}, \operatorname{dim}(\operatorname{domain}(T)) \neq \operatorname{dim}(\operatorname{codomain}(T))$.
(e.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.

NO, although $\operatorname{dim}(\operatorname{domain}(T))=\operatorname{dim}(\operatorname{codomain}(T)), T$ is not onto because $x^{3} \notin R(T)$.
(f.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.

YES, $\operatorname{dim}(\operatorname{domain}(T))=\operatorname{dim}(\operatorname{codomain}(T))$ and we can check that $N(T)=\{0\}$.
(3.) Let $V=\left\{\left.\left(\begin{array}{cc}a & a+b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in F\right\}$. Construct an isomorphism from V to F^{3}.

Solution 1: $T\left(\begin{array}{cc}a & a+b \\ 0 & c\end{array}\right)=(a, b, c)$. This is linear and clearly onto, so as $\operatorname{dim}(V)=$ $\operatorname{dim}\left(F^{3}\right)$, it must be an isomorphism.

Solution 2: Notice that V is actually the space of all 2×2 upper triangular matrices, so we can define T by $T\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=(a, b, c)$.

To get another solution: Choose your favorite three linearly independent vectors in F^{3}, v_{1}, v_{2}, and v_{3}, and your favorite three linearly independent upper triangular 2×2 matrices, w_{1}, w_{2} and w_{3}, and define $T\left(a w_{1}+b w_{2}+c w_{3}\right)=a v_{1}+b v_{2}+c v_{3}$.
(4.) Let α be the standard ordered basis for \mathbb{R}^{2}, and β be the ordered basis $\{(1,2),(2,-1)\}$.
(a.) Compute $[(1,0)]_{\beta},[(0,1)]_{\beta},[(1,2)]_{\alpha}$, and $[(2,-1)]_{\alpha}$.

To find $[(1,0)]_{\beta}=\binom{a}{b}$, solve $(1,0)=a(1,2)+b(2,-1)$ to get $a=\frac{1}{5}$ and $a=\frac{2}{5}$, so $[(1,0)]_{\beta}=\binom{\frac{1}{5}}{\frac{2}{5}}$. The same method gives $[(0,1)]_{\beta}=\binom{\frac{2}{5}}{-\frac{1}{5}}$.
$[(1,2)]_{\alpha}$ expresses $(1,2)$ in the standard basis, so $[(1,2)]_{\alpha}=\binom{1}{2}$ and $[(2,-1)]_{\alpha}=\binom{2}{-1}$.
(b.) Let $\mathbb{I}=I_{\mathbb{R}^{2}}$ be the identity transformation on \mathbb{R}^{2} defined by $\mathbb{I}(v)=v$. Compute $[\mathbb{I}]_{\alpha}^{\beta}$ and $[\mathbb{I}]_{\beta}^{\alpha}$.

If $(1,0)$ and $(0,1)$ are the vectors of the standard ordered basis α, then the columns of $[\mathbb{I}]_{\alpha}^{\beta}$ are the coordinates of $\mathbb{I}(1,0)=(1,0)$ and $\mathbb{I}(0,1)=(0,1)$ in the ordered basis β, or $[(1,0)]_{\beta}$ and $[(0,1)]_{\beta}$, which we found in part (a): $[\mathbb{I}]_{\alpha}^{\beta}=\left(\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right)$.

In the same way, $[\mathbb{I}]_{\beta}^{\alpha}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)$.
(c.) Because composition of linear transformations corresponds to multiplication of their matrices, we should have that $[\mathbb{I}]_{\alpha}^{\beta}[\mathbb{I}]_{\beta}^{\alpha}=[\mathbb{I}]_{\beta}^{\beta}=I$, where I is the 2×2 identity matrix. Check this by multiplying your matrices together.

$$
\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Notice what these matrices are. The column vector $[v]_{\alpha}$ represents the coordinates of v in basis α, and the column vector $[\mathbb{I}]_{\alpha}^{\beta}[v]_{\alpha}=[\mathbb{I}(v)]_{\beta}=[v]_{\beta}$ represents the coordinates of v in basis β. If $v=(x, y)$, then $\binom{x}{y}$ gives the coordinates of v in the standard basis α, and the matrix product $[\mathbb{I}]_{\alpha}^{\beta}\binom{x}{y}=\binom{s}{t}$ gives the coordinates of v in the new basis β (which means that $v=s(1,2)+t(2,-1))$. In other words, multiplying by the matrix $[\mathbb{I}]_{\alpha}^{\beta}$ changes from standard coordinates to β-coordinates, and multiplying by the inverse matrix $[\mathbb{I}]_{\beta}^{\alpha}$ changes from β-coordinates back to standard coordinates.
(d.) Notice that the vectors of β are perpendicular to each other. If the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is perpendicular projection onto the line through the origin in the direction of the vector (1,2), we can express T by the formula $T(s(1,2)+t(2,-1))=s(1,2)$. Find the matrix $[T]_{\alpha}$ (that is, $[T]_{\alpha}^{\alpha}$) that represents T in the standard basis.

Hint: We can think of T as the three-step composition $\mathbb{I} T \mathbb{I}$ where \mathbb{I} is the identity transformation on \mathbb{R}^{2}. You already found $[\mathbb{I}]_{\alpha}^{\beta}$ and $[\mathbb{I}]_{\beta}^{\alpha}$, and it's easy to write down $[T]_{\beta}$.

$$
\begin{aligned}
& {[T(1,2)]_{\beta}=[(1,2)]_{\beta}=\binom{1}{0} \text { and }[T(2,-1)]_{\beta}=[(0,0)]_{\beta}=\binom{0}{0} \text { so }[T]_{\beta}^{\beta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .} \\
& {[T]_{\alpha}^{\alpha}=[\mathbb{I}]_{\beta}^{\alpha}[T]_{\beta}^{\beta}[\mathbb{I}]_{\alpha}^{\beta}=\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{1}{5}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{array}\right) .}
\end{aligned}
$$

(5.) Let $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V, let $\beta=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis for V, and for any $i \leq n$ and $j \leq m$ define a linear transformation $T_{i j}: V \rightarrow W$ by

$$
T_{i j}\left(v_{k}\right)= \begin{cases}w_{j} & \text { if } k=i \\ 0 & \text { if } k \neq i\end{cases}
$$

Show that $\left\{T_{i j} \mid i \leq n\right.$ and $\left.j \leq m\right\}$ is a basis for $\mathcal{L}(V, W)$. (Hint: Show the isomorphism $\mathcal{R}: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\mathcal{R}(T)=[T]_{\alpha}^{\beta}$ takes this set to a basis for $M_{m \times n}(F)$.)
$\mathcal{R}\left(T_{i j}\right)$ is the matrix A with $A_{i j}=1$ and all other entries 0 , so this set maps to the standard basis for $M_{m \times n}(F)$.

