Math 24
Winter 2010
Wednesday, January 27
(1.) TRUE or FALSE? In each part, V, W, and Z denote finite-dimensional vector spaces with ordered bases α, β and γ respectively, $T: V \rightarrow W$ and $U: W \rightarrow Z$ denote linear transformations, and A and B denote matrices.
(a.) $[U T]_{\alpha}^{\gamma}=[T]_{\alpha}^{\beta}[U]_{\beta}^{\gamma}$.

FALSE, but $[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$.
(b.) $[T(v)]_{\beta}=[T]_{\alpha}^{\beta}[v]_{\alpha}$ for all $v \in V$.

TRUE. This is the heart of what is going on here. We go from applying a linear transformation to multiplying by a matrix, by representing vectors using their coordinates with respect to a chosen basis.
(c.) $[U(w)]_{\beta}=[U]_{\alpha}^{\beta}[w]_{\beta}$ for all $w \in W$.

FALSE, but $[U(w)]_{\gamma}=[U]_{\beta}^{\gamma}[w]_{\beta}$ for all $w \in W$. Here $[U(w)]_{\beta}$ and $[U]_{\alpha}^{\beta}$ don't even make sense; $U(w)$ is a vector in Z, but β is not a basis for Z.
(d.) $\left[I_{V}\right]_{\alpha}=I$.

TRUE. The matrix of the identity transformation is the identity matrix.
(e.) $\left[T^{2}\right]_{\alpha}^{\beta}=\left([T]_{\alpha}^{\beta}\right)^{2}$.

FALSE. Here T^{2} doesn't make sense; you can't compute $T(T(v)$), because $T(v)$ is in W, not in V. However, if $U=V=W$ and $\alpha=\beta=\gamma$, then $\left[T^{2}\right]_{\alpha}^{\alpha}=\left([T]_{\alpha}^{\alpha}\right)^{2}$, or using the shorter notation, $\left[T^{2}\right]_{\alpha}=\left([T]_{\alpha}\right)^{2}$.
(f.) $A^{2}=I$ implies that $A=I$ or $A=-I$.

FALSE. There is a counterexample in the text, and you will find another in problem (5).
(g.) $T=L_{A}$ for some matrix A.

FALSE. However, if $V=F^{n}$ and $W=F^{m}$ this is true, and if α and β are the standard bases, then $T=L_{[T]]_{\alpha}^{\beta}}$.
(h.) $A^{2}=0$ implies that $A=0$, where 0 denotes the zero matrix.

FALSE. There is a counterexample in the textbook. Once you have done problem (5), you might think about how you would produce a counterexample.
(i.) $L_{A+B}=L_{A}+L_{B}$.

TRUE. The function from $M_{m \times n}(F)$ to $\mathcal{L}\left(F^{n}, F^{m}\right)$ that sends the matrix A to the function L_{A} is a linear transformation. It is also one-to-one (L_{A} is the zero function only if A is the zero matrix) and onto (every element of $\mathcal{L}\left(F^{n}, F^{m}\right)$ is L_{A} for some matrix A).
(j.) If A is square and $A_{i j}=\delta_{i j}$ for all i and j, then $A=I$.

TRUE.
(2.) If $A=\left(\begin{array}{cc}2 & 5 \\ -3 & 1 \\ 4 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}3 & -2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3\end{array}\right)$, which of the matrix products $A B$ and $B A$ is defined?

Find the second column of that matrix product.
$B A$ is defined. Rows from the left-hand matrix must match up with columns from the right-hand matrix. B is 3×3 and A is 3×2 so the product $B A$ will be 3×2.

The second column of $B A$ is B times the second column of A, which is
$\left(\begin{array}{ccc}3 & -2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3\end{array}\right)\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}3(5)+(-2)(1)+0(2) \\ 1(5)+(-1)(1)+4(2) \\ 5(5)+5(1)+3(2)\end{array}\right)=\left(\begin{array}{c}13 \\ 12 \\ 36\end{array}\right)$.
Notice that the entry in row i is the dot product of the $i^{\text {th }}$ row of B with the column vector $\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)$, which is the second column of A.
(3.) Write down a matrix A such that $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{3 x-2 y+z}{x-2 z}$.
$A=\left(\begin{array}{ccc}3 & -2 & 1 \\ 1 & 0 & -2\end{array}\right)$. Again, the entries of the product should be the dot product of the corresponding rows of A with the column vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. This time, we are multiplying a 2×3 matrix by a 3×1 matrix to obtain a 2×1 matrix.
(4.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates counterclockwise around the origin by ninety degrees (so if v is on the positive x axis, then $T(v)$ is on the positive y-axis), and $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that projects every point perpendicularly onto the x-axis. Let β be the standard basis for \mathbb{R}^{2}.
(a.) Find explicit expressions for $T(x, y)$ and $U(x, y)$. Use these to write explicit expressions for $U T(x, y)$ and $T U(x, y)$. (Recall that $U T(x, y)$ denotes $U(T(x, y))$.) Find $U T(1,0)$, $U T(0,1), T U(1,0)$ and $T U(0,1)$. Use these values to write down the matrices $[U T]_{\beta}$ and $[T U]_{\beta}$.

$$
\begin{aligned}
& T(x, y)=(-y, x) \cdot U(x, y)=(x, 0) \\
& U T(x, y)=U(T(x, y))=U(-y, x)=(-y, 0) \\
& T U(x, y)=T(U(x, y))=T(x, 0)=(0, x) \\
& U T(1,0)=(0,0), U T(0,1)=(-1,0), T U(1,0)=(0,1), T U(0,1)=(0,0)
\end{aligned}
$$

Using the fact that the columns of the matrix of a linear transformation are the coordinates of the images of the basis vectors, we see $[U T]_{\beta}=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$ and $[T U]_{\beta}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
(b.) Find $U(1,0), U(0,1), T(1,0)$ and $T(0,1)$. Use these values to write down the matrices $[U]_{\beta}$ and $[T]_{\beta}$.

$$
\begin{aligned}
& U(1,0)=(1,0), U(0,1)=(0,0), T(1,0)=(0,1), T(0,1)=(-1,0) \\
& {[U]_{\beta}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and }[T]_{\beta}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}
\end{aligned}
$$

(c.) Use matrix multiplication to compute $[U]_{\beta}[T]_{\beta}$ and $[T]_{\beta}[U]_{\beta}$. Compare with your answers to part (a); did you get what you should?

$$
\begin{aligned}
{[U]_{\beta}[T]_{\beta} } & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) . \\
{[T]_{\beta}[U]_{\beta} } & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) . \\
{[T]_{\beta}[U]_{\beta} } & =[T U]_{\beta} \text { and }[U]_{\beta}[T]_{\beta}=[U T]_{\beta}, \text { which is what we should get. }
\end{aligned}
$$

(d.) Compute the matrix product $[U]_{\beta}[T]_{\beta}\binom{x}{y}$. This should give you $[U T(x, y)]_{\beta}$. Compare this with your answer to part (a); did you get what you should?

$$
[U]_{\beta}[T]_{\beta}\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{-y}{x}=\binom{-y}{0}
$$

We computed $U T(x, y)=(-y, 0)$, so setting $v=(x, y)$, we have $[U]_{\beta}[T]_{\beta}[v]_{\beta}=[U T(v)]_{\beta}$, which is what we should get.
(5.) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ other than $I_{\mathbb{R}^{2}}$ and $-I_{\mathbb{R}^{2}}$, with the property that $T(T(v))=v$ for every v in \mathbb{R}^{2}. Use T to find a matrix A such that $A \neq I$ and $A \neq-I$ but $A^{2}=I$. (Recall that $I_{\mathbb{R}^{2}}$ denotes the identity transformation on \mathbb{R}^{2}, so $I_{\mathbb{R}^{2}}(v)=v$ and $-I_{\mathbb{R}^{2}}(v)=-v$. Your function T should be different from either of these.)

Any reflection has this property. For example, the reflection across the line $x=y$ is given by the linear transformation $T(x, y)=(y, x)$. It is easy to see that $T^{2}(x, y)=T(T(x, y))=$ (x, y) so T^{2} is the identity transformation.

Since $T(1,0)=(0,1)$ and $T(0,1)=(1,0)$, the matrix of T in the standard basis is $A=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since A is the matrix of T, then A^{2} should be the matrix of T^{2}, which is the identity matrix I. We can easily check this by matrix multiplication: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

