
Math 24
Winter 2010

Wednesday, January 27

(1.) TRUE or FALSE? In each part, V , W , and Z denote finite-dimensional vector
spaces with ordered bases α, β and γ respectively, T : V → W and U : W → Z denote
linear transformations, and A and B denote matrices.

(a.) [UT ]γα = [T ]βα[U ]γβ.

FALSE, but [UT ]γα = [U ]γβ[T ]βα.

(b.) [T (v)]β = [T ]βα[v]α for all v ∈ V .

TRUE. This is the heart of what is going on here. We go from applying a linear trans-
formation to multiplying by a matrix, by representing vectors using their coordinates with
respect to a chosen basis.

(c.) [U(w)]β = [U ]βα[w]β for all w ∈ W .

FALSE, but [U(w)]γ = [U ]γβ[w]β for all w ∈ W . Here [U(w)]β and [U ]βα don’t even make
sense; U(w) is a vector in Z, but β is not a basis for Z.

(d.) [IV ]α = I.

TRUE. The matrix of the identity transformation is the identity matrix.

(e.) [T 2]βα = ([T ]βα)2.

FALSE. Here T 2 doesn’t make sense; you can’t compute T (T (v)), because T (v) is in W ,
not in V . However, if U = V = W and α = β = γ, then [T 2]αα = ([T ]αα)2, or using the shorter
notation, [T 2]α = ([T ]α)2.

(f.) A2 = I implies that A = I or A = −I.

FALSE. There is a counterexample in the text, and you will find another in problem (5).

(g.) T = LA for some matrix A.

FALSE. However, if V = F n and W = Fm this is true, and if α and β are the standard
bases, then T = L[T ]βα

.

(h.) A2 = 0 implies that A = 0, where 0 denotes the zero matrix.

FALSE. There is a counterexample in the textbook. Once you have done problem (5),
you might think about how you would produce a counterexample.

(i.) LA+B = LA + LB.

TRUE. The function fromMm×n(F ) to L(F n, Fm) that sends the matrixA to the function
LA is a linear transformation. It is also one-to-one (LA is the zero function only if A is the
zero matrix) and onto (every element of L(F n, Fm) is LA for some matrix A).

(j.) If A is square and Aij = δij for all i and j, then A = I.

TRUE.
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(2.) If A =

 2 5
−3 1
4 2

 and B =

3 −2 0
1 −1 4
5 5 3

, which of the matrix products AB and BA

is defined?
Find the second column of that matrix product.

BA is defined. Rows from the left-hand matrix must match up with columns from the
right-hand matrix. B is 3× 3 and A is 3× 2 so the product BA will be 3× 2.

The second column of BA is B times the second column of A, which is3 −2 0
1 −1 4
5 5 3

5
1
2

 =

3(5) + (−2)(1) + 0(2)
1(5) + (−1)(1) + 4(2)

5(5) + 5(1) + 3(2)

 =

13
12
36

.

Notice that the entry in row i is the dot product of the ith row of B with the column

vector

5
1
2

, which is the second column of A.

(3.) Write down a matrix A such that A

xy
z

 =

(
3x− 2y + z
x− 2z

)
.

A =

(
3 −2 1
1 0 −2

)
. Again, the entries of the product should be the dot product of the

corresponding rows of A with the column vector

xy
z

. This time, we are multiplying a 2×3

matrix by a 3× 1 matrix to obtain a 2× 1 matrix.
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(4.) Let T : R2 → R2 be the linear transformation that rotates counterclockwise around
the origin by ninety degrees (so if v is on the positive x axis, then T (v) is on the positive
y-axis), and U : R2 → R2 be the linear transformation that projects every point perpendic-
ularly onto the x-axis. Let β be the standard basis for R2.

(a.) Find explicit expressions for T (x, y) and U(x, y). Use these to write explicit expres-
sions for UT (x, y) and TU(x, y). (Recall that UT (x, y) denotes U(T (x, y)).) Find UT (1, 0),
UT (0, 1), TU(1, 0) and TU(0, 1). Use these values to write down the matrices [UT ]β and
[TU ]β.

T (x, y) = (−y, x). U(x, y) = (x, 0).
UT (x, y) = U(T (x, y)) = U(−y, x) = (−y, 0).
TU(x, y) = T (U(x, y)) = T (x, 0) = (0, x).
UT (1, 0) = (0, 0), UT (0, 1) = (−1, 0), TU(1, 0) = (0, 1), TU(0, 1) = (0, 0).
Using the fact that the columns of the matrix of a linear transformation are the coordi-

nates of the images of the basis vectors, we see [UT ]β =

(
0 −1
0 0

)
and [TU ]β =

(
0 0
1 0

)
(b.) Find U(1, 0), U(0, 1), T (1, 0) and T (0, 1). Use these values to write down the

matrices [U ]β and [T ]β.

U(1, 0) = (1, 0), U(0, 1) = (0, 0), T (1, 0) = (0, 1), T (0, 1) = (−1, 0)

[U ]β =

(
1 0
0 0

)
and [T ]β =

(
0 −1
1 0

)
.

(c.) Use matrix multiplication to compute [U ]β[T ]β and [T ]β[U ]β. Compare with your
answers to part (a); did you get what you should?

[U ]β[T ]β =

(
1 0
0 0

)(
0 −1
1 0

)
=

(
0 −1
0 0

)
.

[T ]β[U ]β =

(
0 −1
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.

[T ]β[U ]β = [TU ]β and [U ]β[T ]β = [UT ]β, which is what we should get.

(d.) Compute the matrix product [U ]β[T ]β

(
x
y

)
. This should give you [UT (x, y)]β.

Compare this with your answer to part (a); did you get what you should?

[U ]β[T ]β

(
x
y

)
=

(
1 0
0 0

)(
0 −1
1 0

)(
x
y

)
=

(
1 0
0 0

)(
−y
x

)
=

(
−y
0

)
.

We computed UT (x, y) = (−y, 0), so setting v = (x, y), we have [U ]β[T ]β[v]β = [UT (v)]β,
which is what we should get.
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(5.) Find a linear transformation T : R2 → R2 other than IR2 and −IR2 , with the property
that T (T (v)) = v for every v in R2. Use T to find a matrix A such that A 6= I and A 6= −I
but A2 = I. (Recall that IR2 denotes the identity transformation on R2, so IR2(v) = v and
−IR2(v) = −v. Your function T should be different from either of these.)

Any reflection has this property. For example, the reflection across the line x = y is given
by the linear transformation T (x, y) = (y, x). It is easy to see that T 2(x, y) = T (T (x, y)) =
(x, y) so T 2 is the identity transformation.

Since T (1, 0) = (0, 1) and T (0, 1) = (1, 0), the matrix of T in the standard basis is A =(
0 1
1 0

)
. Since A is the matrix of T , then A2 should be the matrix of T 2, which is the identity

matrix I. We can easily check this by matrix multiplication:

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
.
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