Math 24 Winter 2010

Monday, January 25

(1.) TRUE or FALSE? If V and W are finite-dimensional vector spaces over the field F, with ordered bases β and γ respectively, and T and U are linear transformations from V to W, then:

(a.) For any scalar a, the function aT + U is a linear transformation from V to W.

- (b.) $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ implies that T = U.
- (c.) If m = dim(V) and n = dim(W) then $[T]^{\gamma}_{\beta}$ is an $m \times n$ matrix.
- (d.) $[T+U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$.
- (e.) $\mathcal{L}(V, W)$ is a vector space.
- (f.) $\mathcal{L}(V, W) = \mathcal{L}(W, V).$

(2.) Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^n respectively. For each linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ compute $[T]^{\gamma}_{\beta}$.

(a.) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a, b) = (2a - b, 3a + 4b, a).

(b.) $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(a_1, a_2, \dots, a_n) = (a_n, a_{n-1}, \dots, a_1).$

(c.) $T : \mathbb{R}^n \to \mathbb{R}$ defined by $T(a_1, a_2, \dots, a_n) = a_1 + a_n$.

(3.) Let β and γ be the standard ordered bases for \mathbb{R}^2 and \mathbb{R}^3 respectively. If $T : \mathbb{R}^2 \to \mathbb{R}^3$ and

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 0\\ -1 & 1\\ 2 & 3 \end{pmatrix}$$

then find a basis for R(T).

(4.) If β is the standard basis for \mathbb{R}^2 , and $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation with $[T]^{\beta}_{\beta} = \begin{pmatrix} a & b \\ c & c \end{pmatrix}$, what is T(x, y)? (Hint: Write (x, y) as a linear combination of the standard basis vectors.)

(5.) If $\beta = \{f_1, f_2, f_3\}$ is the basis for $P_2(\mathbb{R})$ (arrived at through the method of Lagrange interpolation) with the property that

 $f_1(-1) = 1, \quad f_1(0) = 0, \quad f_1(2) = 0,$ $f_2(-1) = 0, \quad f_2(0) = 1, \quad f_2(2) = 0,$ $f_2(-1) = 0, \quad f_2(0) = 0, \quad f_2(2) = 1$

 $f_3(-1) = 0$, $f_3(0) = 0$, $f_3(2) = 1$, find $[x^2]_{\beta}$ (the coordinates of x^2 in the basis β). (You do not have to compute the coefficients of f_1 , f_2 and f_3 to do this problem.)

In general, for $f \in P_2(\mathbb{R})$, what is $[f]_{\beta}$?