Math 24
Winter 2010
Monday, January 25
(1.) TRUE or FALSE? If V and W are finite-dimensional vector spaces over the field F, with ordered bases β and γ respectively, and T and U are linear transformations from V to W, then:
(a.) For any scalar a, the function $a T+U$ is a linear transformation from V to W.
(b.) $[T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}$ implies that $T=U$.
(c.) If $m=\operatorname{dim}(V)$ and $n=\operatorname{dim}(W)$ then $[T]_{\beta}^{\gamma}$ is an $m \times n$ matrix.
(d.) $[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}$.
(e.) $\mathcal{L}(V, W)$ is a vector space.
(f.) $\mathcal{L}(V, W)=\mathcal{L}(W, V)$.
(2.) Let β and γ be the standard ordered bases for \mathbb{R}^{n} and \mathbb{R}^{n} respectively. For each linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ compute $[T]_{\beta}^{\gamma}$.
(a.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(2 a-b, 3 a+4 b, a)$.
(b.) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T\left(a_{1}, a_{2} \ldots, a_{n}\right)=\left(a_{n}, a_{n-1} \ldots, a_{1}\right)$.
(c.) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $T\left(a_{1}, a_{2} \ldots, a_{n}\right)=a_{1}+a_{n}$.
(3.) Let β and γ be the standard ordered bases for \mathbb{R}^{2} and \mathbb{R}^{3} respectively. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
2 & 3
\end{array}\right)
$$

then find a basis for $R(T)$.
(4.) If β is the standard basis for \mathbb{R}^{2}, and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation with $[T]_{\beta}^{\beta}=\left(\begin{array}{ll}a & b \\ c & c\end{array}\right)$, what is $T(x, y)$? (Hint: Write (x, y) as a linear combination of the standard basis vectors.)
(5.) If $\beta=\left\{f_{1}, f_{2}, f_{3}\right\}$ is the basis for $P_{2}(\mathbb{R})$ (arrived at through the method of Lagrange interpolation) with the property that
$f_{1}(-1)=1, \quad f_{1}(0)=0, \quad f_{1}(2)=0$,
$f_{2}(-1)=0, \quad f_{2}(0)=1, \quad f_{2}(2)=0$,
$f_{3}(-1)=0, \quad f_{3}(0)=0, \quad f_{3}(2)=1$,
find $\left[x^{2}\right]_{\beta}$ (the coordinates of x^{2} in the basis β). (You do not have to compute the coefficients of f_{1}, f_{2} and f_{3} to do this problem.)

In general, for $f \in P_{2}(\mathbb{R})$, what is $[f]_{\beta}$?

