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Determinants of order 2

De�nition

If

A =

(
a b

c d

)
is a 2× 2 matrix with entries from a �eld F , then the determinant

of A, denoted det(A) or |A|, to be

|A| = ad − bc.
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Properties of the Determinants

Theorem

The function det : M2×2(F ) → F is a linear function of each row of

a 2× 2 matrix when the other row is �xed. That is

det

(
u + kv

w

)
= det

(
u

w

)
+ kdet

(
v

w

)
and

det

(
w

u + kv

)
= det

(
w

u

)
+ kdet

(
w

u

)

Lecture 21 Determinants



Properties of the Determinants

Theorem

Suppose A is a 2× 2 matrix. Then the determinant of A is nonzero

if and only if A is invertible. Moreover, if A is invertible, then

A−1 =
1

|A|

(
d −c

−b a

)
.
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Determinants and Geometry (part 1)

De�nition

Let β = {u, v} be an ordered basis for R2. The orientation of β is

O

(
u

v

)
=

det

(
u

v

)
∣∣∣∣det( u

v

)∣∣∣∣ .

Note that a coordinate system {u, v} is right handed if and only if

O

(
u

v

)
= 1.
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Determinants of order 3 and higher

De�nition

Suppose that A is a 3× 3 matrix. Then the determinant of A is

de�ned to be:

|A| = |A11| − |A12|+ |A13|.

This formula is called the cofactor expansion along the �rst row

of A.
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Determinants and Geometry (part 2)

Fact

Recall

The inner product between two vectors (a, b, c) and (c , d , e)
in R3is equal to the determinant∣∣∣∣∣∣

 i j k

a b c

d e f

∣∣∣∣∣∣ .

The area of the parallelogram determined by two vectors is

given by the absolute value of the inner product between

vectors.
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Properties of the Determinants

Theorem

If an n × n matrix A has a row consisting entirely of zeros, then

|A| = 0.

Lecture 21 Determinants



Properties of the Determinants

Theorem

If an n × n matrix A has two identical rows, then |A| = 0.
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Properties of the Determinants

Theorem

If an n × n matrix A has rank less than n, then |A| = 0.
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Elementary Operations and Determinants

Fact

If B is a matrix obtained by interchanging any two rows of A,

then |B| = −|A|.
If B is a matrix obtained by multiplying a row of A by a

nonzero scalar k, then |B| = k |A|.
If B is a matrix obtained by adding a multiple of one row of A

to another row of A, then |B| = |A|.
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