## Math 24

Homework 9 (not to be turned in)

1. Let $u_{1}, \ldots, u_{p}$ be an orthogonal basis for a subspace $W$ of $\mathbb{R}^{n}$ and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $T(x)=\operatorname{proj}_{W} x$. Show that $T$ is a linear transformation.
2. Determine if $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ is an orthogonal matrix, and if so find its inverse.
3. Determine if $\left[\begin{array}{rrrr}.5 & .5 & -.5 & -.5 \\ .5 & .5 & .5 & .5 \\ .5 & -.5 & -.5 & .5 \\ 5 & -.5 & .5 & -.5\end{array}\right]$ is an orthogonal matrix, and if so find its inverse.
4. Orthogonally diagonalize the matrix $\left[\begin{array}{rrr}1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3\end{array}\right]$ giving an orthogonal matrix $P$ and a diagonal matrix $D$. The eigenvalues are: $-3,-6,9$.
5. Orthogonally diagonalize the matrix $\left[\begin{array}{cccc}4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4\end{array}\right]$ giving an orthogonal matrix $P$ and a diagonal matrix $D$. The only eigenvalues are 3,5 .
6. Let $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$. Verify that $v_{1}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ are eigenvectors of $A$. Then orthogonally diagonalize $A$.
7. Find the SVD of $\left[\begin{array}{ll}4 & 6 \\ 0 & 4\end{array}\right]$.
8. Find the SVD of $\left[\begin{array}{rr}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right]$. Hint: One column of $U$ can be $\left[\begin{array}{r}1 / \sqrt{6} \\ -2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right]$.
9. Suppose the factorization below is an SVD of a matrix $A$, with the entries rounded to two places.

$$
A=\left[\begin{array}{rrr}
.40 & -.78 & .47 \\
.37 & -.33 & -.87 \\
-.84 & -.52 & -.16
\end{array}\right]\left[\begin{array}{rrr}
7.10 & 0 & 0 \\
0 & 3.10 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
.30 & -.51 & -.81 \\
.76 & .64 & -.12 \\
.58 & -.58 & .58
\end{array}\right]
$$

(a) What is the rank of $A$ ?
(b) Use this decomposition of $A$ with no calculation to write a basis for $\operatorname{Col} A$ and a basis for ker $A$.
10. Repeat the above exercise for the SVD of the following $3 \times 3$ matrix $A$ :

$$
A=\left[\begin{array}{rrr}
-.86 & -.11 & -.50 \\
.31 & .68 & -.67 \\
.41 & -.73 & -.55
\end{array}\right]\left[\begin{array}{rrrr}
12.48 & 0 & 0 & 0 \\
0 & 6.34 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrrr}
.66 & -.03 & -.35 & .66 \\
-.13 & -.90 & -.39 & -.13 \\
.65 & .08 & -.16 & -.73 \\
-.34 & .42 & -.84 & -.08
\end{array}\right]
$$

11. Suppose that $A$ is square and invertible. Find a singular value decomposition of $A^{-1}$.
