Your Name Goes Here

Math 24

Homework 8
\#4.1.4 Let $A, B \in M_{m \times n}(\mathbb{C})$. Show that $\langle A, B\rangle_{F}=\sum_{j=1}^{n}\left\langle a_{j}, b_{j}\right\rangle$ and $\|A\|_{F}^{2}=\sum_{j=1}^{n}\left\|a_{j}\right\|^{2}$.
\#4.2.12c Carry out Gram-Schmidt on the following set of vectors:

$$
\left\{\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

$\# 4.2 .17$ Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \in M_{3}(\mathbb{R})$, and define a new inner product on \mathbb{R}^{3} by $\langle x, y\rangle_{A}:=\langle A x, A y\rangle$ where the inner product on the right-hand side is the standard inner product on \mathbb{R}^{3}. Find an orthonormal basis of \mathbb{R}^{3} with respect to the $\langle\cdot, \cdot\rangle_{A}$.
$\# 4.2 .18$ Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix and define a non-standard inner product on \mathbb{C}^{n} by $\langle x, y\rangle_{A}:=\langle A x, A y\rangle$ where the inner product on the right-hand side is the standard inner product on \mathbb{C}^{n}. For the standard basis vectors $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathbb{C}^{n},
(a) Find $\left\langle e_{j}, e_{k}\right\rangle_{A}$.
(b) Under what circumstances is the standard basis of \mathbb{C}^{n} orthonormal with respect to $\langle\cdot, \cdot\rangle_{A}$?
\#4.3.2a Find the matrix (wrt the standard basis) of the orthogonal projection onto the span of the vectors $\left\{[1,1,1,1]^{T},[1,2,3,4]^{T}\right\} \subset \mathbb{R}^{4}$.
\#4.3.3b Find the matrix (wrt the standard basis) of the orthogonal projection onto the subspace

$$
\left\{[x, y, z]^{T} \in \mathbb{R}^{3} \mid 3 x-y-5 z=0\right\}
$$

Part 8 of Theorem 4.16 is probably of use.
\#4.3.5a Find the point in the subspace U which is closest to the point x, where

$$
U=\operatorname{Span}\left\{[1,0,-1,2]^{T},[2,-1,1,0]^{T}\right\} \text { and } x=[1,2,3,4]^{T}
$$

\#4.3.5d Find the point in the subspace U which is closest to the point x, where

$$
U=\operatorname{ker}\left[\begin{array}{rrrr}
2 & 0 & -1 & 3 \\
1 & 2 & 3 & 0
\end{array}\right] \subseteq \mathbb{R}^{4} \text { and } x=[-2,1,1,2]^{T}
$$

\#4.3.7 Use simple linear regression to find the line in the plane which comes closest to the data points $(-2,1),(-1,2),(0,5),(1,4),(2,8)$.
\#4.3.14 (a) Show that $V=\left\{A \in M_{n}(\mathbb{R}) \mid A^{T}=A\right\}$ and $W=\left\{A \in M_{n}(\mathbb{R}) \mid A^{T}=-A\right\}$ are subspaces of $M_{n}(\mathbb{R})$.
(b) Show that $V^{\perp}=W$ where the inner product is the usual Frobenius inner product.
(c) Show that for any $A \in M_{n}(\mathbb{R})$,

$$
P_{V}(A)=\operatorname{Re}(A) \text { and } P_{W}(A)=\operatorname{Im}(A)
$$

where $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ are defined in Exercise 4.1.5 (ignore the i in the denominator of $\operatorname{Im}(A))$.

